A method of describing one-dimensional photonic crystals (1DPCs) based on Z-domain digital signal processing theory is presented. The analytical expression of the target band gap spectrum in the digital domain is ob...A method of describing one-dimensional photonic crystals (1DPCs) based on Z-domain digital signal processing theory is presented. The analytical expression of the target band gap spectrum in the digital domain is obtained by the autocorrelation of its impulse response. The feasibility of this method is verified by reconstructing two simple 1DPC structures with a target photonic band gap obtained by the traditional transfer matrix method. This method provides an effective approach to function-guided designs of interference-based band gap structures for photonic applications.展开更多
In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and trans...In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronic...In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronics. To pursue the improved intercon?nection performance of capacity, energy efficiency and simplicity, effective approaches are demonstrated including particularly advanced digital signal processing (DSP) meth?ods. In this paper, we present a review about the enabling adaptive DSP methods for opti?cal interconnection applications, and a detailed summary of our recent and ongoing works in this field. In brief, our works focus on dealing with the specific issues for short-reach interconnection scenarios with adaptive operation, including signal-to-noise-ratio (SNR) limitation, level nonlinearity distortion, energy efficiency consideration and the de?cision precision.展开更多
Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular syn...Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular synthesis algorithm often only accounts for a specific function with a specific cell configuration.In this paper,we try to synthesize the programmable waveguide mesh to support multiple configurations with a more general digital signal processing platform.To show the feasibility of this technique,photonic waveguide meshes in different configurations(square,triangular and hexagonal meshes)are designed to realize optical signal interleaving with arbitrary duty cycles.The digital signal processing(DSP)approach offers an effective pathway for the establishment of a general design platform for the software-defined programmable photonic integrated circuits.The use of well-developed DSP techniques and algorithms establishes a link between optical and electrical signals and makes it convenient to realize the computer-aided design of optics–electronics hybrid systems.展开更多
The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve...The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve as the injector for the HIAF,is a superconducting heavy-ion accelerator containing 13 cryomodules.It will operate in either continuous wave mode or pulsed mode,with a beam current ranging from 0.01 to 1 emA.The beam position monitor(BPM)is crucial for this high-beam-power machine,which requires precise beam control and a very small beam loss of less than 1 W/m,especially inside the cryomodules of this unique beam instrument.Nearly 70 BPMs will be installed on the iLinac.New digital beam position and phase measurement(DBPPM)electronics based on a heterogeneous multiprocessing platform system-on-chip(MPSoC)has been developed to provide accurate beam trajectory and phase measurements as well as beam interlocking signals for a fast machine protection system(MPS).The DBPPM comprises an analog front-end(AFE)board in field programmable gate array(FPGA)mezzanine-connector(FMC)form factor,along with a digital signal processing board housed within a “2U 19”chassis.To mitigate radio frequency(RF)leakage effects from high-power RF systems in certain scenarios,beam signals undergo simultaneous processing at both fundamental and second-harmonic frequencies.A dynamic range from-65 dBm to 0 dBm was established to accommodate both weak beam commissioning and high-intensity operational demands.Laboratory tests demonstrated that at input power levels exceeding-45 d Bm,the phase resolution surpasses 0.05°,and the position resolution exceeds 5μm.These results align well with the stipulated measurement requirements.Moreover,the newly developed DBPPM has self-testing and self-calibration functions that are highly helpful for the systematic evaluation of numerous electronic components and fault diagnosis equipment.In addition,the DBPPM electronics implements a 2D nonlinear polynomial correction on the FPGA and can collect accurate real-time position measurements at large beam offsets.This newly developed DBPPM electronics has been applied to several Linac machines,and the results from beam measurements show high performance,good long-term stability,and high reliability.In this paper,a detailed overview of the architecture,performance,and proof-of-principle measurement of the beams is presented.展开更多
A control system for correction mechanisms through the whole trajectory is proposed based on the principle of one-dimensional trajectory correction projectile. Digital signal processing( DSP) is utilized as the core c...A control system for correction mechanisms through the whole trajectory is proposed based on the principle of one-dimensional trajectory correction projectile. Digital signal processing( DSP) is utilized as the core controller and gobal positioning system( GPS) is used to measure trajectory parameters to meet the requirements of calculating ballistics and system functions. Firstly,the hardware,mainly including communication module,ballistic calculation module,boosting& detonating module and data storage module,is designed. Secondly,the supporting software is developed based on the communication protocols of GPS and the workflow of control system. Finally,the feasibility and the reliability of the control system are verified through dynamic tests in a car and live firing experiments. The system lays a foundation for the research on trajectory correction projectile for the whole trajectory.展开更多
In terahertz communication,the direct frequency conversion structure in which orthogonal mixer is the main frequency conversion unit,makes engineers get into trouble of in-phase(I)branch and quadrature(Q)branch imbala...In terahertz communication,the direct frequency conversion structure in which orthogonal mixer is the main frequency conversion unit,makes engineers get into trouble of in-phase(I)branch and quadrature(Q)branch imbalance,carrier wave leakage,etc.These damages result in system performance tremendous degrades.We proposed a semiblind method to estimate the I/Q imbalance of THz orthogonal modulator,based on predefined preamble and pilot symbols for quadrature amplitude modulation(QAM).In this paper,a transmitter with Y band quadrature mixer and 20Gbps base-band signal has been tested.The bandwidth of the baseband signal was 7GHz,and the modulation type was 16QAM.By this method,7dB improvement of the system’s symbol Mean Square Error(MSE)has been got.That means the proposed method can be used to eliminate the I/Q imbalance effectively.展开更多
This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the f...This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the fundamental principle of Nyquist WDM. This results in muchrelaxed transceiver bandwidth and simpler spectral design. However, in fasterthanNyquist, implementation complexity is shifted from the transmitter side to the receiver side. Therefore, successful application of fasterthanNyquist depends on innovation in the receiver structure. In this paper, we discuss the guidelines for implementing suboptimum, lowcomplexity receivers based on fasterthanNyquist. We suggest that duobinary shaping is a good technique for trading off achievable spectral efficiency, detection performance, and implementation complexity and might be preferable to Nyquist WDM. Experiments are conducted to verify robustness of the proposed technique.展开更多
Nonlinearity impairments and distortions have been bothering the bandwidth constrained passive optical network(PON)system for a long time and limiting the develop-ment of capacity in the PON system.Unlike other works ...Nonlinearity impairments and distortions have been bothering the bandwidth constrained passive optical network(PON)system for a long time and limiting the develop-ment of capacity in the PON system.Unlike other works concentrating on the exploration of the complex equalization algorithm,we investigate the potential of constellation shap-ing joint support vector machine(SVM)classification scheme.At the transmitter side,the 8 quadrature amplitude modulation(8QAM)constellation is shaped into three designs to mitigate the influence of noise and distortions in the PON channel.On the receiver side,simple multi-class linear SVM classifiers are utilized to replace complex equalization methods.Simulation results show that with the bandwidth of 25 GHz and overall bitrate of 50 Gbit/s,at 10 dBm input optical power of a 20 km standard single mode fiber(SSMF),and under a hard-decision forward error correction(FEC)threshold,transmission can be realized by employing Circular(4,4)shaped 8QAM joint SVM classifier at the maximal power budget of 37.5 dB.展开更多
Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show th...Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle damage assessment for tactical operations. The study will provide significant technological support for further independent development.展开更多
The growing problems of harmonic pollution on coal mine power lines caused by high-power DC drive systems has increased the use of active power filters.We analyzed compensation errors caused by the time lag in the det...The growing problems of harmonic pollution on coal mine power lines caused by high-power DC drive systems has increased the use of active power filters.We analyzed compensation errors caused by the time lag in the detecting circuits of an active power filter based on DSP control.We derived a mathematical model for the compensation error starting from the error estimation when a single distortion frequency is present.This model was then extended to the case where multiple frequencies are present in the distortion.A formula for a general theory of compensation error with fixed load and fixed lag time is presented.The theoretical analysis and experimental results show that the delay time of an active power filter mainly arises from the sampling time.Lower sampling frequencies introduce larger compensation errors in the active power filter reference current.展开更多
Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear ...Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear electrical equalizer (NLEE) based on the timedomain Volterra series. These compensation algorithms are implemented in a singlechannel 50 Gb/s coherent optical singlecarrier frequency division multiplexed (CO-SCFDM) system transmitting over 10 × 80 km of standard singlemode fiber (SSMF).展开更多
The JC-CA300 handheld Aerosol particle counter is designed and developed based on light scattering principle. The JC-CA300 counter is composed of optical sensor, DSP component and microprocessor unit. The hardware arc...The JC-CA300 handheld Aerosol particle counter is designed and developed based on light scattering principle. The JC-CA300 counter is composed of optical sensor, DSP component and microprocessor unit. The hardware architecture is designed in compact style by SMT IC chips. The whole counter weight is less than 2 pounds. With 32K RAM space, the JC-CA300 can store 500 sampling records and support standard printer and communicate with a computer through RS232 interface. Based on experimental results, the main performance of JC-CA300 is better than that of the ARTI'S HHPC-6 instrument.展开更多
An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in...An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10804070 and 61137002)the Key Program of the Science and Technology Commission of Shanghai,China(Grant No.11jc1413300)the Shanghai Leading Academic Discipline Project,China(Grant No.S30108)
文摘A method of describing one-dimensional photonic crystals (1DPCs) based on Z-domain digital signal processing theory is presented. The analytical expression of the target band gap spectrum in the digital domain is obtained by the autocorrelation of its impulse response. The feasibility of this method is verified by reconstructing two simple 1DPC structures with a target photonic band gap obtained by the traditional transfer matrix method. This method provides an effective approach to function-guided designs of interference-based band gap structures for photonic applications.
基金supported by the High Technology Research and Development Program of China("863"Program)under Grant No.2012AA011303 and 2013AA010501National Nature Science Foundation of China under Grant No.61325002
文摘In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
基金This work was supported by National Natural Science Foundation of Chi⁃na(NSFC)under Grant Nos.61935011,61875124 and 61875049.
文摘In recent years, explosively increasing data traffic has been boosting the con?tinuous demand of high speed optical interconnection inside or among data centers, high performance computers and even consumer electronics. To pursue the improved intercon?nection performance of capacity, energy efficiency and simplicity, effective approaches are demonstrated including particularly advanced digital signal processing (DSP) meth?ods. In this paper, we present a review about the enabling adaptive DSP methods for opti?cal interconnection applications, and a detailed summary of our recent and ongoing works in this field. In brief, our works focus on dealing with the specific issues for short-reach interconnection scenarios with adaptive operation, including signal-to-noise-ratio (SNR) limitation, level nonlinearity distortion, energy efficiency consideration and the de?cision precision.
文摘Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular synthesis algorithm often only accounts for a specific function with a specific cell configuration.In this paper,we try to synthesize the programmable waveguide mesh to support multiple configurations with a more general digital signal processing platform.To show the feasibility of this technique,photonic waveguide meshes in different configurations(square,triangular and hexagonal meshes)are designed to realize optical signal interleaving with arbitrary duty cycles.The digital signal processing(DSP)approach offers an effective pathway for the establishment of a general design platform for the software-defined programmable photonic integrated circuits.The use of well-developed DSP techniques and algorithms establishes a link between optical and electrical signals and makes it convenient to realize the computer-aided design of optics–electronics hybrid systems.
基金supported by the National Natural Science Foundation of China(No.11975290)。
文摘The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve as the injector for the HIAF,is a superconducting heavy-ion accelerator containing 13 cryomodules.It will operate in either continuous wave mode or pulsed mode,with a beam current ranging from 0.01 to 1 emA.The beam position monitor(BPM)is crucial for this high-beam-power machine,which requires precise beam control and a very small beam loss of less than 1 W/m,especially inside the cryomodules of this unique beam instrument.Nearly 70 BPMs will be installed on the iLinac.New digital beam position and phase measurement(DBPPM)electronics based on a heterogeneous multiprocessing platform system-on-chip(MPSoC)has been developed to provide accurate beam trajectory and phase measurements as well as beam interlocking signals for a fast machine protection system(MPS).The DBPPM comprises an analog front-end(AFE)board in field programmable gate array(FPGA)mezzanine-connector(FMC)form factor,along with a digital signal processing board housed within a “2U 19”chassis.To mitigate radio frequency(RF)leakage effects from high-power RF systems in certain scenarios,beam signals undergo simultaneous processing at both fundamental and second-harmonic frequencies.A dynamic range from-65 dBm to 0 dBm was established to accommodate both weak beam commissioning and high-intensity operational demands.Laboratory tests demonstrated that at input power levels exceeding-45 d Bm,the phase resolution surpasses 0.05°,and the position resolution exceeds 5μm.These results align well with the stipulated measurement requirements.Moreover,the newly developed DBPPM has self-testing and self-calibration functions that are highly helpful for the systematic evaluation of numerous electronic components and fault diagnosis equipment.In addition,the DBPPM electronics implements a 2D nonlinear polynomial correction on the FPGA and can collect accurate real-time position measurements at large beam offsets.This newly developed DBPPM electronics has been applied to several Linac machines,and the results from beam measurements show high performance,good long-term stability,and high reliability.In this paper,a detailed overview of the architecture,performance,and proof-of-principle measurement of the beams is presented.
文摘A control system for correction mechanisms through the whole trajectory is proposed based on the principle of one-dimensional trajectory correction projectile. Digital signal processing( DSP) is utilized as the core controller and gobal positioning system( GPS) is used to measure trajectory parameters to meet the requirements of calculating ballistics and system functions. Firstly,the hardware,mainly including communication module,ballistic calculation module,boosting& detonating module and data storage module,is designed. Secondly,the supporting software is developed based on the communication protocols of GPS and the workflow of control system. Finally,the feasibility and the reliability of the control system are verified through dynamic tests in a car and live firing experiments. The system lays a foundation for the research on trajectory correction projectile for the whole trajectory.
基金National Key RD Program of China Grant(2018YFB1801504)the President Funding of China Academy of Engineering Physics with No.YZJJLX2018009.
文摘In terahertz communication,the direct frequency conversion structure in which orthogonal mixer is the main frequency conversion unit,makes engineers get into trouble of in-phase(I)branch and quadrature(Q)branch imbalance,carrier wave leakage,etc.These damages result in system performance tremendous degrades.We proposed a semiblind method to estimate the I/Q imbalance of THz orthogonal modulator,based on predefined preamble and pilot symbols for quadrature amplitude modulation(QAM).In this paper,a transmitter with Y band quadrature mixer and 20Gbps base-band signal has been tested.The bandwidth of the baseband signal was 7GHz,and the modulation type was 16QAM.By this method,7dB improvement of the system’s symbol Mean Square Error(MSE)has been got.That means the proposed method can be used to eliminate the I/Q imbalance effectively.
文摘This paper begins with Nyquist wavelengthdivision multiplexing (WDM) and then introduces fasterthanNyquist. In fasterthanNyquist a certain amount of intersymbol interference (ISI) is accepted, which violates the fundamental principle of Nyquist WDM. This results in muchrelaxed transceiver bandwidth and simpler spectral design. However, in fasterthanNyquist, implementation complexity is shifted from the transmitter side to the receiver side. Therefore, successful application of fasterthanNyquist depends on innovation in the receiver structure. In this paper, we discuss the guidelines for implementing suboptimum, lowcomplexity receivers based on fasterthanNyquist. We suggest that duobinary shaping is a good technique for trading off achievable spectral efficiency, detection performance, and implementation complexity and might be preferable to Nyquist WDM. Experiments are conducted to verify robustness of the proposed technique.
文摘Nonlinearity impairments and distortions have been bothering the bandwidth constrained passive optical network(PON)system for a long time and limiting the develop-ment of capacity in the PON system.Unlike other works concentrating on the exploration of the complex equalization algorithm,we investigate the potential of constellation shap-ing joint support vector machine(SVM)classification scheme.At the transmitter side,the 8 quadrature amplitude modulation(8QAM)constellation is shaped into three designs to mitigate the influence of noise and distortions in the PON channel.On the receiver side,simple multi-class linear SVM classifiers are utilized to replace complex equalization methods.Simulation results show that with the bandwidth of 25 GHz and overall bitrate of 50 Gbit/s,at 10 dBm input optical power of a 20 km standard single mode fiber(SSMF),and under a hard-decision forward error correction(FEC)threshold,transmission can be realized by employing Circular(4,4)shaped 8QAM joint SVM classifier at the maximal power budget of 37.5 dB.
文摘Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle damage assessment for tactical operations. The study will provide significant technological support for further independent development.
基金provided by the National Basic Research Program of China (No.2005CB221505)
文摘The growing problems of harmonic pollution on coal mine power lines caused by high-power DC drive systems has increased the use of active power filters.We analyzed compensation errors caused by the time lag in the detecting circuits of an active power filter based on DSP control.We derived a mathematical model for the compensation error starting from the error estimation when a single distortion frequency is present.This model was then extended to the case where multiple frequencies are present in the distortion.A formula for a general theory of compensation error with fixed load and fixed lag time is presented.The theoretical analysis and experimental results show that the delay time of an active power filter mainly arises from the sampling time.Lower sampling frequencies introduce larger compensation errors in the active power filter reference current.
基金supported by National Natural Science Foundation of China (No. 61077053, 60932004, and60877045)National Basic Research Program of China(No. 2010CB328201)
文摘Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear electrical equalizer (NLEE) based on the timedomain Volterra series. These compensation algorithms are implemented in a singlechannel 50 Gb/s coherent optical singlecarrier frequency division multiplexed (CO-SCFDM) system transmitting over 10 × 80 km of standard singlemode fiber (SSMF).
文摘The JC-CA300 handheld Aerosol particle counter is designed and developed based on light scattering principle. The JC-CA300 counter is composed of optical sensor, DSP component and microprocessor unit. The hardware architecture is designed in compact style by SMT IC chips. The whole counter weight is less than 2 pounds. With 32K RAM space, the JC-CA300 can store 500 sampling records and support standard printer and communicate with a computer through RS232 interface. Based on experimental results, the main performance of JC-CA300 is better than that of the ARTI'S HHPC-6 instrument.
基金funded by the National Natural Science Foundation of China NSFC,U22A2005 and 62201033theYoung Elite Scientists Sponsorship Program of CIC 2021QNRC001。
文摘An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.