目的构建基于MRI扩散加权成像(diffusion-weighted imaging,DWI)的深度学习模型,讨论其对急性缺血性卒中静脉溶栓治疗患者90天预后的预测价值。材料与方法回顾性分析了2家医院进行静脉溶栓治疗的677名急性缺血性卒中(acute ischemic str...目的构建基于MRI扩散加权成像(diffusion-weighted imaging,DWI)的深度学习模型,讨论其对急性缺血性卒中静脉溶栓治疗患者90天预后的预测价值。材料与方法回顾性分析了2家医院进行静脉溶栓治疗的677名急性缺血性卒中(acute ischemic stroke,AIS)患者的临床及影像学资料,通过影像储存和传输系统(picture archiving and communication systems,PACS)收集患者MRI-DWI图像,使用深度神经网络提取患者图像特征。我们将数据集1(医院1)随机分为训练集(70%)和测试集(30%),建立基于临床特征(模型A)和MRI-DWI影像组学特征(模型B)的传统机器学习模型,基于MRI-DWI深度学习特征的深度学习模型(模型C)以及结合临床特征和深度学习特征的组合模型(模型D),预测AIS患者接受静脉溶栓治疗后90天预后[通过评估改良Rankin评分(modified Rankin Scale,mRS),评分<2分表示预后良好]。数据集2(医院2)用于外部验证。通过受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)评估模型的预测性能。为了比较不同模型的AUC值差异是否有统计学意义,进一步采用DeLong检验进行统计分析,评估各模型之间AUC差异的显著性。结果基于临床特征和DWI-MRI影像组学特征的机器学习模型A和模型B以及深度学习模型C的AUC分别为0.705[95%置信区间(confidence interval,CI):0.613~0.792]、0.846(95%CI:0.777~0.906)和0.877(95%CI:0.811~0.934)。结合临床和深度学习特征的组合模型D在预测AIS患者静脉溶栓后90天预后方面表现出显著优势,其AUC值为0.930(95%CI:0.890~0.963)。此外,深度学习模型在外部验证数据集中同样显示出良好的性能,模型C和模型D的AUC分别为0.887(95%CI:0.798~0.960)和0.947(95%CI:0.891~0.984)。结论基于MRI-DWI的影像组学特征在预测接受静脉溶栓治疗的AIS患者的90天预后中发挥重要作用。深度学习方法在AIS溶栓治疗预后的预测模型中优于传统机器学习方法。结合临床特征和MRI-DWI特征的深度学习模型可为临床个性化评估AIS患者预后及制订治疗方案提供有力工具。展开更多
文摘目的构建基于MRI扩散加权成像(diffusion-weighted imaging,DWI)的深度学习模型,讨论其对急性缺血性卒中静脉溶栓治疗患者90天预后的预测价值。材料与方法回顾性分析了2家医院进行静脉溶栓治疗的677名急性缺血性卒中(acute ischemic stroke,AIS)患者的临床及影像学资料,通过影像储存和传输系统(picture archiving and communication systems,PACS)收集患者MRI-DWI图像,使用深度神经网络提取患者图像特征。我们将数据集1(医院1)随机分为训练集(70%)和测试集(30%),建立基于临床特征(模型A)和MRI-DWI影像组学特征(模型B)的传统机器学习模型,基于MRI-DWI深度学习特征的深度学习模型(模型C)以及结合临床特征和深度学习特征的组合模型(模型D),预测AIS患者接受静脉溶栓治疗后90天预后[通过评估改良Rankin评分(modified Rankin Scale,mRS),评分<2分表示预后良好]。数据集2(医院2)用于外部验证。通过受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)评估模型的预测性能。为了比较不同模型的AUC值差异是否有统计学意义,进一步采用DeLong检验进行统计分析,评估各模型之间AUC差异的显著性。结果基于临床特征和DWI-MRI影像组学特征的机器学习模型A和模型B以及深度学习模型C的AUC分别为0.705[95%置信区间(confidence interval,CI):0.613~0.792]、0.846(95%CI:0.777~0.906)和0.877(95%CI:0.811~0.934)。结合临床和深度学习特征的组合模型D在预测AIS患者静脉溶栓后90天预后方面表现出显著优势,其AUC值为0.930(95%CI:0.890~0.963)。此外,深度学习模型在外部验证数据集中同样显示出良好的性能,模型C和模型D的AUC分别为0.887(95%CI:0.798~0.960)和0.947(95%CI:0.891~0.984)。结论基于MRI-DWI的影像组学特征在预测接受静脉溶栓治疗的AIS患者的90天预后中发挥重要作用。深度学习方法在AIS溶栓治疗预后的预测模型中优于传统机器学习方法。结合临床特征和MRI-DWI特征的深度学习模型可为临床个性化评估AIS患者预后及制订治疗方案提供有力工具。
文摘目的旨在评估动态对比增强磁共振成像(dynamic contrast-enhancement magnetic resonance imaging,DCE-MRI)结合扩散加权成像(diffusion weighted imaging,DWI)在预测前列腺癌(prostate cancer,PCa)Ki-67表达和Gleason评分中的诊断效能。材料与方法回顾性分析了2019年1月至2023年10月自贡市第四人民医院收治的66例PCa患者的临床及影像资料。结合T2WI、DWI序列和由DWI自动计算出的表观扩散系数(apparent diffusion coeffieient,ADC),在DCE-MRI图像上手动勾画肿瘤感兴趣区(region of interest,ROI),计算ROI药代动力学参数,包括容积转运常数(volume transfer contrast,K^(trans))、速率常数(rate contrast,K_(ep))、血管外细胞外容积分数(extravascular extracellular volume fraction,Ve),并测量ADC值。根据靶向穿刺病理诊断Gleason评分和Ki-67表达水平,分为Ki-67高表达组(Ki-67>10%)和低表达组(Ki-67≤10%),Gleason评分低级别(GG 1~2)和高级别(GG 3~5)组。组间差异比较使用两独立样本t检验或非参数检验,采用Spearman相关分析评价DCE-MRI参数和ADC值与Ki-67、Gleason评分的相关性,并建立logistic回归模型,通过受试者工作特征(receiver operating characteristic,ROC)曲线评估诊断效能。结果ADC值与Ki-67表达、Gleason评分均呈负相关(P<0.001),K^(trans)、K_(ep)、Ve与Ki-67表达均呈正相关(P<0.001),K^(trans)、K_(ep)与Gleason评分均呈正相关(P<0.001)。Ki-67高、低表达组K^(trans)、K_(ep)、Ve、ADC值比较差异均具有统计学意义(P<0.01),Gleason评分高、低级别组K^(trans)、K_(ep)、ADC值比较差异均具有统计学意义(P<0.01);Ki-67表达的ROC曲线分析显示,联合模型K^(trans)+K_(ep)+Ve+ADC诊断效能最好,曲线下面积(area under the curve,AUC)为0.940;Gleason评分分级的ROC曲线分析显示,联合模型K^(trans)+K_(ep)+ADC诊断效能最好,AUC为0.861。结论DCE-MRI的药代动力学参数和ADC值相结合,在预测PCa的Ki-67表达和Gleason评分中显示出高诊断效能。联合使用DCE-MRI定量参数与ADC值可提高PCa病理分级和生物侵袭性的预测准确性。
文摘目的探讨基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)和扩散加权成像(diffusion-weighted imaging,DWI)的瘤内及瘤周影像组学预测乳腺癌人表皮生长因子受体2(human epidermal growth factor receptor-2,HER-2)状态的价值。材料与方法回顾性分析246例经术后病理证实的乳腺癌患者的临床及影像学资料,按7∶3比例随机分为训练组和验证组。采用ITK-SNAP软件手动勾画病灶瘤内感兴趣区,使用PHIgo-AK软件进行瘤周的扩展并提取瘤内及瘤周的影像组学特征。采用最小冗余最大相关(max-relevance and min-redundancy,mRMR)算法等选择DCE-MRI、DWI瘤内及瘤周的最优特征数。分别建立单序列及联合序列的影像组学模型,采用受试者工作特征(receiveroperating characteristic,ROC)曲线对各模型的预测效能进行分析,并计算曲线下面积(area under the curve,AUC),选出预测效能最高的模型,在训练组中从临床及常规影像学特征中通过单因素logistic回归筛选出预测HER-2状态的独立危险因素,结合预测效能最高模型的影像组学标签评分(radiomic score,rad-score)建立融合模型,并以诺模图(nomogram)展示,采用AUC值,决策曲线分析(decision curve analysis,DCA)评估模型的效能及临床价值。结果基于DCE-MRI和DWI瘤内及瘤周的影像组学联合模型预测HER-2状态的AUC值在训练组和验证组分别为0.953和0.948,效能最高。肿瘤最大径是区分乳腺癌HER-2状态的独立危险因素,最终结合rad-score和肿瘤最大径建立的融合模型对乳腺癌HER-2状态有良好的预测效能,在训练组的AUC值为0.961,验证组为0.958。结论基于DCE-MRI和DWI瘤内及瘤周的影像组学方法对乳腺癌HER-2状态的预测具有良好的价值。