期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Location of anemometer along Lanzhou-Xinjiang railway 被引量:3
1
作者 高广军 张洁 熊小慧 《Journal of Central South University》 SCIE EI CAS 2014年第9期3698-3704,共7页
Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simul... Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation(DES) with standard SpalartAllmaras(SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier. 展开更多
关键词 anemometer location wind barrier detached eddy simulation wind speed distribution
在线阅读 下载PDF
Influence of ribs on train aerodynamic performances 被引量:2
2
作者 苗秀娟 高广军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1986-1993,共8页
The influence of ribs on the train aerodynamic performance was computed using detached eddy simulation(DES), and the transient iteration was solved by the dual-time step lower-upper symmetric Gauss-Seidel(LU-SGS) meth... The influence of ribs on the train aerodynamic performance was computed using detached eddy simulation(DES), and the transient iteration was solved by the dual-time step lower-upper symmetric Gauss-Seidel(LU-SGS) method. The results show that the ribs installed on the roof have a great effect on the train aerodynamic performance. Compared with trains without ribs, the lift force coefficient of the train with convex ribs changes from negative to positive, while the side force coefficient increases by 110%and 88%, respectively. Due to the combined effect of the lift force and side force, the overturning moment of the train with convex ribs and cutting ribs increases by 140% and 106%, respectively. There is larger negative pressure on the roof of the train without ribs than that with ribs. The ribs on the train would disturb the flow structure and contribute to the air separation, so the separation starts from the roof, while there is no air separation on the roof of the train without ribs. The ribs can also slow down the flow speed above the roof and make the air easily sucked back to the train surface. The vortices at the leeward side of the train without ribs are small and messy compared with those of the train with convex or cutting ribs. 展开更多
关键词 TRAIN RIB detached eddy simulation(DES) aerodynamic performance CROSSWIND
在线阅读 下载PDF
Effect of car-body lower-center rolling on aerodynamic performance of a high-speed train 被引量:2
3
作者 LIU Dong-run LIANG Xi-feng +4 位作者 WANG Jia-qiang ZHONG Mu LU Zhai-jun DING Hu LI Xiao-bai 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2820-2836,共17页
The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the p... The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter. 展开更多
关键词 lower-center rolling car-body vibration aerodynamic performance improved delayed detached eddy simulation(IDDES) high-speed train
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部