期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
1
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Confidence support vector domain description 被引量:2
2
作者 Liu Sanyang Liang Jinjin +1 位作者 Wu De Duan Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期852-857,共6页
To accelerate the training of support vector domain description (SVDD), confidence support vector domain description (CSVDD) is proposed based on the observation that the description boundary is determined by a sm... To accelerate the training of support vector domain description (SVDD), confidence support vector domain description (CSVDD) is proposed based on the observation that the description boundary is determined by a small subset of training data called support vectors. Namely, the number of training samples in the userdefined sphere is calculated and taken as the confidence measure, according to which the training samples are ranked in ascending order. Those former ranked ones are selected as the boundary targets for the SVDD training. Simulations on UCI data demonstrate the effectiveness and superiority of CSVDD: the number of training targets and the training time are reduced without any loss of accuracy. 展开更多
关键词 support vector domain description confidence support vector domain description user-defined sphere confidence measure boundary targets.
在线阅读 下载PDF
Interactive early warning technique based on SVDD 被引量:6
3
作者 Lin Jian~(1,2) Peng Minjing~(1,2) 1.School of Business Administration,South China Univ.of Technology,Guangzhou 510641,F.R.China 2.Systems Science & Technology Inst,Wuyi Univ.,Jiangmen 529020,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期527-533,共7页
After reviewing current researches on early warning, it is found that “bad”data of some systems is not easy to obtain, which makes methods proposed by these researches unsuitable for monitored systems. An interactiv... After reviewing current researches on early warning, it is found that “bad”data of some systems is not easy to obtain, which makes methods proposed by these researches unsuitable for monitored systems. An interactive early warning technique based on SVDD (support vector data description) is proposed to adopt “good” data as samples to overcome the difficulty in obtaining the “bad” data. The process consists of two parts: (1) A hypersphere is fitted on “good” data using SVDD. If the data object are outside the hypersphere, it would be taken as “suspicious”; (2) A group of experts would decide whether the suspicious data is “bad” or “good”, early warning messages would be issued according to the decisions. And the detailed process of implementation is proposed. At last, an experiment based on data of a macroeconomic system is conducted to verify the proposed technique. 展开更多
关键词 interactive data mining early warning support vector data description group decision making.
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
4
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部