The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional an...The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.展开更多
目的:比较乳腺腺样囊性癌(adenoid cystic carcinoma of the breast,ACCB)与三阴性浸润性导管癌(invasive ductal carcinoma,IDC)临床病理特征及预后。方法:分析2004年1月至2020年12月就诊于中国医学科学院肿瘤医院的26例ACCB与216例三...目的:比较乳腺腺样囊性癌(adenoid cystic carcinoma of the breast,ACCB)与三阴性浸润性导管癌(invasive ductal carcinoma,IDC)临床病理特征及预后。方法:分析2004年1月至2020年12月就诊于中国医学科学院肿瘤医院的26例ACCB与216例三阴性IDC患者的临床病理资料。采用Kaplan-Meier法绘制无疾病生存(disease free survival,DFS)和总生存(overall survival,OS)曲线,Log-rank法进行组间比较。结果:中位随访时间72.4个月,4例ACCB患者出现复发转移,肺和肝是常见的转移部位。与IDC相比,ACCB的发病年龄>60岁、Ki-67低表达、神经侵犯、分期早(Ⅰ期和Ⅱ期)、无淋巴结转移的比例更高(P<0.05)。与IDC相比,ACCB患者的5年DFS率和OS率有获益趋势,但差异无统计学意义。Ki-67低表达ACCB患者的中位DFS显著高于Ki-67高表达者(χ^(2)=4.633,P=0.031)。无神经侵犯的患者较有神经侵犯者的DFS显著改善(χ^(2)=3.861,P=0.049)。结论:Ki-67高表达和神经侵犯是ACCB复发转移的危险因素。与三阴性IDC相比,ACCB具有Ki-67低表达、神经侵犯、腋窝淋巴结阴性、分期早的临床病理特点和以保乳术为主、不行辅助化疗的治疗方式。展开更多
基金supported by the National Natural Science Foundation of China(6107211761302142)
文摘The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.