This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
电力系统仿真验证往往希望通过拓扑结构图直观地分析网络的潮流分布以及动态特性。然而电力系统机电暂态过程仿真软件如BPA、PSS/E和PSASP都不能自动地根据电力系统的电气联系合理地布置网络中的元件,而需要人为地调整各元件的位置来形...电力系统仿真验证往往希望通过拓扑结构图直观地分析网络的潮流分布以及动态特性。然而电力系统机电暂态过程仿真软件如BPA、PSS/E和PSASP都不能自动地根据电力系统的电气联系合理地布置网络中的元件,而需要人为地调整各元件的位置来形成一个直观的电气接线图。这种人为手动调整,不仅给仿真增加了工作量,更有可能带来更多的人为误差。为此,文中提出了基于图论的深度优先搜索(depth first searching,DFS)算法,依据电力系统的电气拓扑结构形成电力系统生成树的实现方法。用文中方法生成的IEEE9节点算例系统的可视化界面验证了该算法的有效性和准确性。展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘电力系统仿真验证往往希望通过拓扑结构图直观地分析网络的潮流分布以及动态特性。然而电力系统机电暂态过程仿真软件如BPA、PSS/E和PSASP都不能自动地根据电力系统的电气联系合理地布置网络中的元件,而需要人为地调整各元件的位置来形成一个直观的电气接线图。这种人为手动调整,不仅给仿真增加了工作量,更有可能带来更多的人为误差。为此,文中提出了基于图论的深度优先搜索(depth first searching,DFS)算法,依据电力系统的电气拓扑结构形成电力系统生成树的实现方法。用文中方法生成的IEEE9节点算例系统的可视化界面验证了该算法的有效性和准确性。