The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normall...The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normally invisible and often in the form of a patch rather than a through-width crack.Therefore,a debonding patch detection technique based on fiber optic interferometry is proposed.A quasi-impulse loading is applied with a rubberhead hammer and the total elongation of a surface-mounted optical fiber along the length of the repair material is measured as a function of load position.When a debonding patch is present,the induced sudden slope or sign change on the plot of fiber integral strain v.s.load position will reveal the extent and the location of the debonded area.The results of the study indicate that the proposed technique is applicable for debonding patch detection in repaired members under various support conditions.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
基金supported by the National Natural Science Foundation of China(No.51278156)the Basic Project of Shenzhen Science & Technology Program(No.JCYJ2017030155815876)
文摘The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normally invisible and often in the form of a patch rather than a through-width crack.Therefore,a debonding patch detection technique based on fiber optic interferometry is proposed.A quasi-impulse loading is applied with a rubberhead hammer and the total elongation of a surface-mounted optical fiber along the length of the repair material is measured as a function of load position.When a debonding patch is present,the induced sudden slope or sign change on the plot of fiber integral strain v.s.load position will reveal the extent and the location of the debonded area.The results of the study indicate that the proposed technique is applicable for debonding patch detection in repaired members under various support conditions.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.