A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of ...A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with vari...The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with variable attribute set in the process of information updating.The relationship between the extension sets of the original context and that of its sub-context is analyzed.The composition and decomposition theories are then generalized to the situation involving more than two sub-contexts and the situation with variable attribute set and object set.展开更多
The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration m...The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration matrix by the combination of predigesting LU decomposition and local orthogonalization, and the convergence of solution is proved. Indicated from the example, this algorithm can increase the rate of computation efficiently and it is quite stable.展开更多
基金Supported by the National Natural Science Foundation of China(62376214)the Natural Science Basic Research Program of Shaanxi(2023-JC-YB-533)Foundation of Ministry of Education Key Lab.of Cognitive Radio and Information Processing(Guilin University of Electronic Technology)(CRKL200203)。
文摘A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金supported by grants from the National Natural Science Foundation of China(No.60703117 and No.11071281)the Fundamental Research Funds for the Central Universities(No.JY 10000903010 and No.JY 10000903014).
文摘The purpose of this paper is to study the construction of concept lattice from variable formal contexts.Composition and decomposition theories are proposed for the unraveling of concept lattice from contexts with variable attribute set in the process of information updating.The relationship between the extension sets of the original context and that of its sub-context is analyzed.The composition and decomposition theories are then generalized to the situation involving more than two sub-contexts and the situation with variable attribute set and object set.
文摘The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration matrix by the combination of predigesting LU decomposition and local orthogonalization, and the convergence of solution is proved. Indicated from the example, this algorithm can increase the rate of computation efficiently and it is quite stable.