Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub...Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.展开更多
Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are mod...This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.展开更多
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have...Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.展开更多
A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is ado...A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is adopted to describe the localization problem. Under an unknown-but-bounded assumption for sensor noise,bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merged these constraints,a convex polyhedron representing the set of all configurations consistent with the sensor measurements can be induced. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more AUVs can then be obtained by projecting this polyhedron into appropriate subspaces of the configuration space. The localization uncertain region for each AUV can be recovered by an approximation algorithm to realize underwater localization for multiple AUVs. The deduced theoretically and the simulated results show that it is an economical and practical localization method for the AUV swarm.展开更多
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
基金Supported by "973" National Fundamental Research Program (51332)
文摘Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.
文摘This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
文摘Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.
基金Sponsored by National Natural Foundation (50979093)High Technology Research and Development Program of China (2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A novel underwater localization algorithm for autonomous underwater vehicle(AUVs) is proposed. Taking aim at the high cost of the traditional "leader-follower" positioning,a "parallel" model is adopted to describe the localization problem. Under an unknown-but-bounded assumption for sensor noise,bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merged these constraints,a convex polyhedron representing the set of all configurations consistent with the sensor measurements can be induced. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more AUVs can then be obtained by projecting this polyhedron into appropriate subspaces of the configuration space. The localization uncertain region for each AUV can be recovered by an approximation algorithm to realize underwater localization for multiple AUVs. The deduced theoretically and the simulated results show that it is an economical and practical localization method for the AUV swarm.
基金国家自然科学基金(62272077,72301050)重庆市教委科技重大项目(KJZD-M202400604)资助+1 种基金the Natural ScienceFoundation of Chongqing,China(No.cstc2021jcyj msxmX0557)the MOE Layout Foundation of Humanities and Social Sciences,China(No.20YJAZH102).