期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
1
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(dt-cwt)
在线阅读 下载PDF
基于DT-CWT统计模型的舰船噪声信号中线谱信号检测研究 被引量:3
2
作者 侯铁双 相敬林 韩鹏 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第6期801-805,共5页
双树复解析小波变换(DT-CWT)在信号去噪方面的性能优于实小波变换,且计算量远小于后者。文章基于DT-CWT小波理论,通过对海洋环境噪声中舰船噪声中低频线谱信号小波系数的层间联合分布的分析,提出一种DT-CWT统计模型并推导出最大后验概... 双树复解析小波变换(DT-CWT)在信号去噪方面的性能优于实小波变换,且计算量远小于后者。文章基于DT-CWT小波理论,通过对海洋环境噪声中舰船噪声中低频线谱信号小波系数的层间联合分布的分析,提出一种DT-CWT统计模型并推导出最大后验概率估计子(MAP),用于检测海洋噪声背景中的舰船噪声中的低频线谱信号。对实测舰船噪声信号和海洋环境噪声的分析表明,所提出的DT-CWT统计模型算法明显优于VisuShrink、SureShrink和BayesShrink算法对舰船噪声中线谱信号的检测效果。 展开更多
关键词 信号检测 算法 dt-cwt统计模型 线谱 舰船辐射噪声
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
3
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(dt-cwt) Deep learning
在线阅读 下载PDF
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
4
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (dt-cwt ) singular value decomposition (SVD)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部