网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取...网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取得了一定成效,但在实际应用中存在挑战:数据分布不均、数据集中传输困难,以及异构设备和动态网络环境的限制,从而难以实现实时检测。为应对这些问题,本文提出了一种基于异步个性化联邦学习的DDoS攻击检测与缓解方法AdaPerFed(Adaptive Personalized Federated Learning)。首先,通过定制的ResNet架构高效处理一维流量数据,并集成Net模块增强特征提取能力。然后,通过软件定义网络(SDN,Software-Defined Networking)模拟复杂动态网络环境,并引入完善的缓解系统应对多样化攻击场景。个性化联邦学习框架有效处理了非独立同分布(Non-IID,Non-Independent and Identically Distributed)数据问题,并通过异步学习机制适应异构设备和网络条件的差异,提升了系统的鲁棒性和扩展性。实验结果表明,AdaPerFed在CICDDoS2019、CIC-IDS2017和InSDN等数据集上均优于其他联邦学习算法,在不同客户端数量下展现出更快的收敛速度和更强的鲁棒性,DDoS检测准确率提升了15%~20%。消融实验进一步验证了个性化聚合模块对系统性能的显著提升。展开更多
针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型G...针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型GVBNet(global variable block net),使用攻击密度自适应计算稀疏注意力。利用信息熵以及信息增益分析提取攻击流量的连续字节作为特征向量,通过构建基于GVBNet的网络模型在两种数据集上进行训练。实验结果表明,该方法具有良好的识别效果、检测速度以及抗干扰能力,在不同的环境下具有应用价值。展开更多
提出并解决一种饱和脉冲多智能体系统在拒绝服务(Denial of service,DOS)攻击环境中的安全定制化一致性控制问题.首先引入微分机制和加权策略,构建一种带可调参数一致性模式项的系统模型,以满足复杂场景对一致性的定制化需求.其次结合...提出并解决一种饱和脉冲多智能体系统在拒绝服务(Denial of service,DOS)攻击环境中的安全定制化一致性控制问题.首先引入微分机制和加权策略,构建一种带可调参数一致性模式项的系统模型,以满足复杂场景对一致性的定制化需求.其次结合饱和效应和脉冲机制,为系统设计一种满足执行器功率受限约束的饱和脉冲控制协议.再次采用切换拓扑分析DOS攻击下系统的网络拓扑结构,并采用李雅普洛夫稳定性和矩阵测度理论,得到系统实现安全定制化一致性的充分条件.最后通过仿真实验和对比分析,验证了所提理论的有效性和优越性.展开更多
文摘提出并解决一种饱和脉冲多智能体系统在拒绝服务(Denial of service,DOS)攻击环境中的安全定制化一致性控制问题.首先引入微分机制和加权策略,构建一种带可调参数一致性模式项的系统模型,以满足复杂场景对一致性的定制化需求.其次结合饱和效应和脉冲机制,为系统设计一种满足执行器功率受限约束的饱和脉冲控制协议.再次采用切换拓扑分析DOS攻击下系统的网络拓扑结构,并采用李雅普洛夫稳定性和矩阵测度理论,得到系统实现安全定制化一致性的充分条件.最后通过仿真实验和对比分析,验证了所提理论的有效性和优越性.