单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近...单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.展开更多
软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件...软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.展开更多
基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列...基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列无约束最小化技术(sequential unconstrained minimization technique,SUMT)修正法进行修正,利用国际全球导航卫星系统服务(International GNSS Service,IGS)网络的6个测站双频观测数据,建立了电离层VTEC区域模型,并估算了31天的卫星频间DCB,将估算值与电离层分析中心中国科学院(Chinese Academy of Sciences,CAS)发布的产品进行对比分析,结果显示:所有的卫星差值都在0.42 ns以内,其中87.5%的卫星差值在0.4 ns以内,78.1%的卫星差值在0.2 ns以内,频间DCB的平均偏差基本小于0.4 ns。此外,估算的全球定位系统(global positioning system,GPS)卫星DCB序列的标准差(standard deviation,STD)值小于0.1 ns。建立了经纬度范围为5°E~25°E、40°N~60°N的电离层区域模型,将VTEC建模结果与CAS发布的全球电离层地图(global ionospheric map,GIM)产品做差比较,结果显示整体时间点的差值均处于4 TECU以内,且超过90%的区域差值在2 TECU以内,表明估算的结果与CAS产品具有良好的一致性。展开更多
文摘单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.
文摘软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.