螺旋桨转矩与大气密度成正比,飞艇最高飞行高度海拔30 km处大气密度为0 km处的1/66,若保持相同转速,0 km的转矩是30 km处的66倍,常规永磁无刷直流电机(brushless DC machines,BLDCM)难以兼顾对高、低空螺旋桨负载的匹配,限制了飞艇飞...螺旋桨转矩与大气密度成正比,飞艇最高飞行高度海拔30 km处大气密度为0 km处的1/66,若保持相同转速,0 km的转矩是30 km处的66倍,常规永磁无刷直流电机(brushless DC machines,BLDCM)难以兼顾对高、低空螺旋桨负载的匹配,限制了飞艇飞行高度范围。为此提出利用调节BLDCM磁链的解决思路,进而提出一种BLDCM绕组换接方法,绕组并联减小磁链,满足高空下电机高速运行需求,绕组串联增加磁链,减小电机电流,满足电机低空低速大转矩需求。对不同绕组模式电机性能进行了理论分析,研究了绕组换接BLDCM的设计方法,设计并测试了1台3.5 k W BLDCM样机,样机不同绕组模式下性能测试结果与理论分析相吻合,证明该绕组换接方法可使BLDCM满足0~30 km高度空间内螺旋桨负载驱动的转矩和转速需求。展开更多
文摘螺旋桨转矩与大气密度成正比,飞艇最高飞行高度海拔30 km处大气密度为0 km处的1/66,若保持相同转速,0 km的转矩是30 km处的66倍,常规永磁无刷直流电机(brushless DC machines,BLDCM)难以兼顾对高、低空螺旋桨负载的匹配,限制了飞艇飞行高度范围。为此提出利用调节BLDCM磁链的解决思路,进而提出一种BLDCM绕组换接方法,绕组并联减小磁链,满足高空下电机高速运行需求,绕组串联增加磁链,减小电机电流,满足电机低空低速大转矩需求。对不同绕组模式电机性能进行了理论分析,研究了绕组换接BLDCM的设计方法,设计并测试了1台3.5 k W BLDCM样机,样机不同绕组模式下性能测试结果与理论分析相吻合,证明该绕组换接方法可使BLDCM满足0~30 km高度空间内螺旋桨负载驱动的转矩和转速需求。