A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-G...A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
基金This project was supported by the Graduate Innovation Laboratory of Jilin University(502039)Jilin Science Committee of China(20030519)+1 种基金the National Natural Science Foundation of China (69872012)the Foundation of Nanjing Institute of Technology.
文摘A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.