期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Morphology and conductivity of in-situ PEO-LiClO_4-TiO_2 composite polymer electrolyte 被引量:2
1
作者 潘春跃 冯庆 +2 位作者 王丽君 张倩 巢猛 《Journal of Central South University of Technology》 2007年第3期348-352,共5页
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit... PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2. 展开更多
关键词 polyethylene oxide (PEO) TIO2 composite polymer electrolyte in-situ composite CONDUCTIVITY
在线阅读 下载PDF
Fabrication and analysis of TIG welding-brazing butt joints of in-situ TiB2/7050 composite and TA2 被引量:1
2
作者 Huan-huan Sun Yi-bo Ren +4 位作者 Yang Feng Hao-qiang Ba Dong Chen Chun-juan Xia Hao-wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1062-1070,共9页
Lightweight hybrid structures of Al MMCs and titanium alloy dissimilar materials have great prospect in the defence industry application. So, it is necessary to join Al MMCs with Ti metal to achieve this structural de... Lightweight hybrid structures of Al MMCs and titanium alloy dissimilar materials have great prospect in the defence industry application. So, it is necessary to join Al MMCs with Ti metal to achieve this structural design. In this work, in-situ Ti B_(2)/7050 composite and TA2 were firstly attempted to join by TIG welding-brazing technique. The result was that the intact welding-brazing butt joint was successfully fabricated. The joint presents dual characteristics, being a brazing on TA2 side and a welding on Ti B_(2)/7050 side. At brazing joint side, ER4043 filler metal effectively wets on TA2 under TIG heating condition,and a continuous interfacial reaction layer with 1 e3 mm is formed at welded metal/TA2 interface. The whole interfacial reaction layers are composed of Ti(Al Si)3 intermetallic compounds(IMCs), but their morphologies at the different regions present obvious distinguishes. The microhardness of the reaction layers is as much as 141 e190 HV. At welding joints side, the fusion zone appears the equixaed crystal structure, and the grain sizes are much smaller than those of welded metal, which is attributed to the effect of Ti B2 particulates from the melted Ti B_(2)/7050 on acceleration formation and inhibiting growth for the new crystal nucleus. The tensile test results show that average tensile strength of the optimal welding-brazing joint is able to achieve 138 MPa. The failure of the tensile joint occurs by quasi-cleavage pattern, and the cracks initiate from the IMCs layer at the groove surface of TA2 and propagate into the welded metal. 展开更多
关键词 in-situ TiB2/7050 composite TA2 TIG welding-brazing FABRICATION Analysis
在线阅读 下载PDF
Effects of SiC amount on phase compositions and properties of Ti_3SiC_2-based composites 被引量:2
3
作者 蔡艳芝 殷小玮 尹洪峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期14-22,共9页
The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented... The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/Ti C-SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15% than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/Ti C-SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78 μm, was near a half of that of T,2715 μm, at 1500 °C for 20 h. Ti3SiC2/Ti C composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC-SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20% SiC added amount. 展开更多
关键词 in-situ reaction composites oxidation mechanical properties
在线阅读 下载PDF
Processing technique and sliding friction and wear behavior of TiB_2/ZA27 composite 被引量:1
4
作者 耿浩然 崔峰 +1 位作者 田宪法 钱宝光 《Journal of Central South University of Technology》 SCIE EI CAS 2005年第2期140-144,共5页
In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a two-step method. TiB2/Al composite was produced by incorporating K2TiF6, KBF4 salts and other agents into Al melt. As a... In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a two-step method. TiB2/Al composite was produced by incorporating K2TiF6, KBF4 salts and other agents into Al melt. As a master alloy, TiB2/Al composite was used to manufacture TiB2/ZA27 composite, which results in the generation of well-distributed reinforcing TiB2 phase. The hardness, friction and wear behavior of TiB2/ZA27 composite were investigated. The results show that the hardness of the composite is enhanced with increasing the content of TiB2 particles, the incorporation of TiB2 reduces the wear rate of TiB2/ZA27 composite and improves the friction property under lubricated and dry sliding friction conditions. The worn track width of ZA27 alloy is 1.6 and 2.5 times as long as that of (2.1%)TiB2/ZA27 composite at 150N and 700N load under lubricated conditions, which indicates that TiB2/ZA27 composite possesses higher bearing ability. 展开更多
关键词 in-situ reaction TIB2 ZA27 composite WEAR friction
在线阅读 下载PDF
Bearing capacity and mechanical behavior of CFG pile composite foundation
5
作者 陈秋南 赵明华 +1 位作者 周国华 张主华 《Journal of Central South University》 SCIE EI CAS 2008年第S2期45-49,共5页
CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs... CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness. 展开更多
关键词 CFG PILE composite FOUNDATION properties of BEARING capacity in-situ static load PILE-SOIL stress ratio
在线阅读 下载PDF
Effect of Zr on microstructure and properties of Cu–15Cr alloy
6
作者 TIAN Wei BI Li-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2757-2766,共10页
In order to study the effect of Zr on the microstructure and isothermal annealing performance of Cu–Cr in situ composites, Cu–15 Cr and Cu–15 Cr–0.24 Zr alloys were prepared by means of vacuum medium frequency ind... In order to study the effect of Zr on the microstructure and isothermal annealing performance of Cu–Cr in situ composites, Cu–15 Cr and Cu–15 Cr–0.24 Zr alloys were prepared by means of vacuum medium frequency induction melting technology. The two kinds of test alloys with deformation of 3.79 were subjected to isothermal annealing test. The effects of Zr on the as-cast microstructure, the isothermal annealing structure and the tensile fracture morphology of Cu–15 Cr alloy were studied by means of scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and transmission electron microscopy(TEM). The results show that the addition of Zr leads to the formation of homogeneous and fine Cu Zr intermetallic compounds, which suppresses the formation electron microscopy of eutectic Cr phase and makes the eutectic Cr content much lower than that of Cu–15 Cr alloy. The recrystallization temperature of the Cu matrix is increased, and it is maintained at a fine equiaxed crystal at 400 °C. After isothermal annealing at 400 °C for 220 h, the tensile strength, electrical conductivity and elongation of the test alloy containing Zr were 720 MPa, 68% IACS and 6.7%, respectively; while the tensile strength, electrical conductivity and elongation of the test alloys without Zr were 488 MPa, 70% IACS and 12.4%, respectively. 展开更多
关键词 Cu–Cr–Zr ALLOY in-situ composites ISOTHERMAL annealing CuZr INTERMETALLIC compounds mechanical properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部