Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In...Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In these experimental conditions, the purities of films are high and more than 99.0%. The films are homogeneous and monophase solid solution of Pt and Ir. Weight percentage of platinum are much higher than iridium in the alloy. Lattice constant of the alloy changes with the platinum composition. Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~ 550℃. The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.展开更多
Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0...Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.展开更多
Experimental results of the lubricating behaviour of Pb-Sn alloy films formed by ion-plating on brass substrates are given. It is shown that the film microhardness, friction coefficient and wear life per thickness are...Experimental results of the lubricating behaviour of Pb-Sn alloy films formed by ion-plating on brass substrates are given. It is shown that the film microhardness, friction coefficient and wear life per thickness are under the influence of the substrate. The wear failure of film appears to be film adhesion and transferring by the mating surface.展开更多
The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions ...The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions and morphologies were analyzed by X-ray diffraction(XRD), scanning election microscopy (SEM). The corrosion behaviors of the film were investigated electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests and immersion tests. The results show that the optimum parameters for electrochemical deposition are as follows: pH 10.0, time 30 min, 50 mmol/L Na2CO3 and temperature 25 ℃ by the designed experiments according to the orthogonal table L(9, 34). The corrosion protection efficiency is dependent on the deposition parameters. The cerium conversion film shows better corrosion protection behavior than chromate conversion film on Mg-Gd-Y-Zr magnesium alloy.展开更多
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was resp...Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.展开更多
Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ...Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.展开更多
The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X...The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.展开更多
Compact anodic films with high hardness and good corrosion resistance on magnesium alloys were prepared by a new constant voltage and arc-free anodizing process. The effects of anodizing parameters such as applied vol...Compact anodic films with high hardness and good corrosion resistance on magnesium alloys were prepared by a new constant voltage and arc-free anodizing process. The effects of anodizing parameters such as applied voltage and electrolyte temperature on the peak current density and the thickness of films were investigated. In addition, the morphologies and corrosion resistance of films were investigated by scanning electron microscopy and potentiodynamic polarization, respectively. The results show that the higher the applied voltage, the higher the peak current density and the thicker the films. However, too high applied voltage may result in breakdown of films and intense sparking which may deteriorate the properties of the anodic films and bring about unsafety. The new anodizing process can be applied in a wide range of temperature. The new anodic films have numbers of pores with the diameter of 0.55.0μm which do not transverse the entire film.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
基金supported by National Natural Science Foundation of China(Grant No.50771051)the Natural Science Foundation of Yunnan,China(Program No2003PY10and No2011FZ220)
文摘Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In these experimental conditions, the purities of films are high and more than 99.0%. The films are homogeneous and monophase solid solution of Pt and Ir. Weight percentage of platinum are much higher than iridium in the alloy. Lattice constant of the alloy changes with the platinum composition. Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~ 550℃. The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.
基金Project(2004AA513023) supported by the National High Technology Research and Development Program of China
文摘Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.
文摘Experimental results of the lubricating behaviour of Pb-Sn alloy films formed by ion-plating on brass substrates are given. It is shown that the film microhardness, friction coefficient and wear life per thickness are under the influence of the substrate. The wear failure of film appears to be film adhesion and transferring by the mating surface.
基金Project (5133001E) supported by the Major State Basic Research and Development Program of China
文摘The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions and morphologies were analyzed by X-ray diffraction(XRD), scanning election microscopy (SEM). The corrosion behaviors of the film were investigated electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests and immersion tests. The results show that the optimum parameters for electrochemical deposition are as follows: pH 10.0, time 30 min, 50 mmol/L Na2CO3 and temperature 25 ℃ by the designed experiments according to the orthogonal table L(9, 34). The corrosion protection efficiency is dependent on the deposition parameters. The cerium conversion film shows better corrosion protection behavior than chromate conversion film on Mg-Gd-Y-Zr magnesium alloy.
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
文摘Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.
文摘Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.
基金Project(2004BB8429) supported by Chongqing Municipal Science and Technology Commission, China
文摘The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.
基金Project (2002107) supported by the Natural Science Foundation of Hunan Province project(2005-241) supported by theScience Project of Changsha
文摘Compact anodic films with high hardness and good corrosion resistance on magnesium alloys were prepared by a new constant voltage and arc-free anodizing process. The effects of anodizing parameters such as applied voltage and electrolyte temperature on the peak current density and the thickness of films were investigated. In addition, the morphologies and corrosion resistance of films were investigated by scanning electron microscopy and potentiodynamic polarization, respectively. The results show that the higher the applied voltage, the higher the peak current density and the thicker the films. However, too high applied voltage may result in breakdown of films and intense sparking which may deteriorate the properties of the anodic films and bring about unsafety. The new anodizing process can be applied in a wide range of temperature. The new anodic films have numbers of pores with the diameter of 0.55.0μm which do not transverse the entire film.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.