A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventiona...A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.展开更多
CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
文摘A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.