Time-delay and Doppler shift estimation is a basic task for pulse-Doppler radar processing. For low-rate sampling of echo signals, several kinds of compressive sampling(CS) pulse-Doppler(CSPD) radar are developed with...Time-delay and Doppler shift estimation is a basic task for pulse-Doppler radar processing. For low-rate sampling of echo signals, several kinds of compressive sampling(CS) pulse-Doppler(CSPD) radar are developed with different analog-to-information conversion(AIC) systems. However, a unified metric is absent to evaluate their parameter estimation performance. Towards this end, this paper derives the deterministic Cramer-Rao bound(CRB)for the joint delay-Doppler estimation of CSPD radar to quantitatively analyze the estimate performance. Theoretical results reveal that the CRBs of both time-delays and Doppler shifts are inversely proportional to the received target signal-to-noise ratio(SNR), the number of transmitted pulses and the sampling rate of AIC systems. The main difference is that the CRB of Doppler shifts also lies on the coherent processing interval. Numerical experiments validate these theoretical results. They also show that the structure of the AIC systems has weak influence on the CRBs, which implies that the AIC structures can be flexibly selected for the implementation of CSPD radar.展开更多
To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to est...To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to estimate coherence parameters(CPs), i.e., time and phase calibration values in transmission and reception estimation, by separating the target returns into monostatic and bistatic echoes. However, CPs estimations exist uncertainties, which will affect the performance gain after multiradar coherent combination. The principle of coherently combining multiple radars is elaborated and the signal probability model for CPs estimation is established. On this basis, CPs Cramer-Rao bound(CRB) is derived in the closed-form, according to which the non-tight and tight upper bounds for multiple radars coherent combination performance gain are derived in the closed-form and via Monte Carlo(MC) simulations, respectively. Simulations validate the correctness of the derived CRB and gain bounds.展开更多
This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent apert...This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.展开更多
The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multi...The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.展开更多
由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参...由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参数,因此共形阵列天线的DOA(Direction-Of-Arrival)估计需要与阵列入射信号极化参数联合估计.本文提出了一种盲极化DOA估计算法,通过在锥面共形阵列天线中设置三对特殊子阵,利用ESPRIT(Estimationof Signal Parameters via Rotational Invariance Techniques)算法,将入射信号极化参数与二维角参数去耦合,在入射信号极化参数未知条件下实现了高分辨DOA估计,并对估计性能进行了理论分析与推导,给出了参数估计的CRB(Cramer-RaoBound),通过Monte Carlo仿真实验验证了DOA估计算法的有效性.展开更多
基金supported by the National Natural Science Foundation of China(6140121061571228)
文摘Time-delay and Doppler shift estimation is a basic task for pulse-Doppler radar processing. For low-rate sampling of echo signals, several kinds of compressive sampling(CS) pulse-Doppler(CSPD) radar are developed with different analog-to-information conversion(AIC) systems. However, a unified metric is absent to evaluate their parameter estimation performance. Towards this end, this paper derives the deterministic Cramer-Rao bound(CRB)for the joint delay-Doppler estimation of CSPD radar to quantitatively analyze the estimate performance. Theoretical results reveal that the CRBs of both time-delays and Doppler shifts are inversely proportional to the received target signal-to-noise ratio(SNR), the number of transmitted pulses and the sampling rate of AIC systems. The main difference is that the CRB of Doppler shifts also lies on the coherent processing interval. Numerical experiments validate these theoretical results. They also show that the structure of the AIC systems has weak influence on the CRBs, which implies that the AIC structures can be flexibly selected for the implementation of CSPD radar.
基金supported by the National Natural Science Foundation of China(61471372)
文摘To achieve a high signal-to-noise ratio(SNR) while maintaining moderate radar antenna, a target-based calibration manner is available to coherently combine multiple radars. The key to this calibration manner is to estimate coherence parameters(CPs), i.e., time and phase calibration values in transmission and reception estimation, by separating the target returns into monostatic and bistatic echoes. However, CPs estimations exist uncertainties, which will affect the performance gain after multiradar coherent combination. The principle of coherently combining multiple radars is elaborated and the signal probability model for CPs estimation is established. On this basis, CPs Cramer-Rao bound(CRB) is derived in the closed-form, according to which the non-tight and tight upper bounds for multiple radars coherent combination performance gain are derived in the closed-form and via Monte Carlo(MC) simulations, respectively. Simulations validate the correctness of the derived CRB and gain bounds.
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)+2 种基金the Foundation of Tsinghua University(20101081772)the Foundation of National Laboratory of Information Control Technology for Communication System of Chinathe Foundation of National Information Control Laboratory
文摘This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)the Foundation of Tsinghua University(20101081772)
文摘The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.
文摘由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参数,因此共形阵列天线的DOA(Direction-Of-Arrival)估计需要与阵列入射信号极化参数联合估计.本文提出了一种盲极化DOA估计算法,通过在锥面共形阵列天线中设置三对特殊子阵,利用ESPRIT(Estimationof Signal Parameters via Rotational Invariance Techniques)算法,将入射信号极化参数与二维角参数去耦合,在入射信号极化参数未知条件下实现了高分辨DOA估计,并对估计性能进行了理论分析与推导,给出了参数估计的CRB(Cramer-RaoBound),通过Monte Carlo仿真实验验证了DOA估计算法的有效性.