期刊文献+
共找到27,986篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Electrode of Co_3O_4@PPy Core/Shell Nanosheet Arrays for High-Performance Supercapacitors 被引量:5
1
作者 Xiaojun Yang Kaibing Xu +1 位作者 Rujia Zou Junqing Hu 《Nano-Micro Letters》 SCIE EI CAS 2016年第2期143-150,共8页
Herein, combining solverthermal route and electrodeposition, we grew unique hybrid nanosheet arrays consisting of Co_3O_4 nanosheet as a core, PPy as a shell. Benefiting from the PPy as conducting polymer improving an... Herein, combining solverthermal route and electrodeposition, we grew unique hybrid nanosheet arrays consisting of Co_3O_4 nanosheet as a core, PPy as a shell. Benefiting from the PPy as conducting polymer improving an electron transport rate as well as synergistic effects from such a core/shell structure, a hybrid electrode made of the Co_3O_4@PPy core/shell nanosheet arrays exhibits a large areal capacitance of 2.11 F cm-2at the current density of 2 m A cm^(-2), a *4-fold enhancement compared with the pristine Co_3O_4electrode; furthermore, this hybrid electrode also displays good rate capability(*65 % retention of the initial capacitance from 2 to 20 m A cm^(-2)) and superior cycling performance(*85.5 % capacitance retention after 5000 cycles). In addition, the equivalent series resistance value of the Co_3O_4@PPy hybrid electrode(0.238 X) is significantly lower than that of the pristine Co_3O_4electrode(0.319 X). These results imply that the Co_3O_4@PPy hybrid composites have a potential for fabricating next-generation energy storage and conversion devices. 展开更多
关键词 Co3O4@PPy core/shell NANOSHEET ARRAYS SUPERCAPACITORS
在线阅读 下载PDF
Type-Ⅱ Core/Shell Nanowire Heterostructures and Their Photovoltaic Applications 被引量:3
2
作者 Yiyan Cao Zhiming Wu +5 位作者 Jianchao Ni Waseem.A.Bhutto Jing Li Shuping Li Kai Huang Junyong Kang 《Nano-Micro Letters》 SCIE EI CAS 2012年第3期135-141,共7页
Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facili... Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked. 展开更多
关键词 Type-Ⅱ heterostructures core/shell nanowire solar cell ZnO/ZnSe
在线阅读 下载PDF
Assembling Co_9S_8 nanoflakes on Co_3O_4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction
3
作者 Shengjue Deng Shenghui Shen +5 位作者 Yu Zhong Kaili Zhang Jianbo Wu Xiuli Wang Xinhui Xia Jiangping Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1203-1209,共7页
Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient CoS@CoOcore/shell electrocatalysts for oxygen evolution r... Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient CoS@CoOcore/shell electrocatalysts for oxygen evolution reaction(OER) via a combined hydrothermal-sulfurization method. The sulfurized net-like CoSnanoflakes are strongly anchored on the CoOnanowire core forming self-supported binder-free core/shell electrocatalysts. Positive advantages including larger active surface area of CoSnanoflakes,and reinforced structural stability are achieved in the CoS@CoOcore/shell arrays. The OER performances of the CoS@CoOcore/shell arrays are thoroughly tested and enhanced electrocatalytic performance with lower over-potential(260 m V at 20 m A cm) and smaller Tafel slopes(56 mV dec-1) as well as long-term durability are demonstrated in alkaline medium. Our proposed core/shell smart design may provide a new way to construct other advanced binder-free electrocatalysts for applications in electrochemical catalysis. 展开更多
关键词 Metal sulfides NANOFLAKES NANOWIRES core/shell arrays ELECTROCATALYSIS Oxygen evolution reaction
在线阅读 下载PDF
Reduced-temperature ordering of FePt nanoparticle assembled films by Fe30Pt70/Fe3O4 core/shell structure
4
作者 贺淑莉 彭印 +4 位作者 刘丽丽 姜宏伟 刘丽峰 郑鹉 王艾玲 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3536-3540,共5页
In this paper, Fe30Pt70/Fe3O4 core/shell nanoparticles were synthesized by chemical routine and the layered polyethylenimine (PEI)-Fe30Pt70/Fe3O4 structure was constructed by molecule-mediated self-assembly techniqu... In this paper, Fe30Pt70/Fe3O4 core/shell nanoparticles were synthesized by chemical routine and the layered polyethylenimine (PEI)-Fe30Pt70/Fe3O4 structure was constructed by molecule-mediated self-assembly technique. The dimension of core/shell structured nanoparticles was that of 4nm core and 2 nm shell. After annealing under a flow of forming gas (50%Ar2+30%H2) for 1 h at or above 400℃, the iron oxide shell was reduced to Fe and diffused to Pt-rieh core, which leaded to the formation of L1. phase FePt at low temperature. The x-ray diffraction results and magnetic properties measurement showed that the chemical ordering temperature of Fe30Pt70/Fe3O4 core/shell nanoparticles assembly can be reduced to as low as 400℃. The sample annealed at 400℃ showed the eoereivity of 4KOe with the applied field of 1.5T. The core/shell structure was suggested to be an effective way to reduce the ordering temperature obviously. 展开更多
关键词 FEPT core/shell structure nanoparticles magnetic properties
在线阅读 下载PDF
Infrared light-emitting diodes based on colloidal Pb Se/Pb S core/shell nanocrystals
5
作者 Byung-Ryool Hyun Mikita Marus +7 位作者 Huaying Zhong Depeng Li Haochen Liu Yue Xie Weon-kyu Koh Bing Xu Yanjun Liu Xiao Wei Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期482-488,共7页
Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degra... Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications. 展开更多
关键词 Pb Se/Pb S core/shell nanocrystal ligand exchange infrared light-emitting diodes external quantum efficiency
在线阅读 下载PDF
An oxide/silicon core/shell nanowire metal-oxide semiconductor field-effect transistor
6
作者 张立宁 何进 +2 位作者 周旺 陈林 徐艺文 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期398-401,共4页
This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher Ion/Ioff ratio aft... This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher Ion/Ioff ratio after intro- ducing the oxide core into a traditional nanowire MOSFET (TNM). The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off, drain induced barrier lowering and subthreshold swing degradation. Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM. 展开更多
关键词 core/shell NANOWIRE nanowire MOSFET
在线阅读 下载PDF
High-order plasmon resonances in an Ag/Al_2O_3 core/shell nanorice 被引量:1
7
作者 陈立 魏红 +1 位作者 陈克求 徐红星 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期19-24,共6页
Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances... Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications. 展开更多
关键词 localized surface plasmon resonances nanorice core-shell LSPR sensing
在线阅读 下载PDF
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
8
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai Xue-qian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness Damping
在线阅读 下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
9
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
在线阅读 下载PDF
Au_(core)Co_(shell)纳米粒子的制备、表征及其表面增强拉曼光谱研究 被引量:3
10
作者 鲍芳 崔颜 +2 位作者 姚建林 任斌 顾仁敖 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第4期627-629,共3页
AucoreCoshell nanoparticles with different shell thicknesses were prepared by using chemical reduction method and characterized by scanning electron microscopy(SEM) and cyclic voltammetry(CV). The results reveal t... AucoreCoshell nanoparticles with different shell thicknesses were prepared by using chemical reduction method and characterized by scanning electron microscopy(SEM) and cyclic voltammetry(CV). The results reveal that the prepared core-shell nanoparticles were covered by Co shell and exhibited the similar electrochemistry property with the Co nanoparticles surface. Surface enhanced Raman spectroscopy(SERS) activities of these nanoparticles were studied by using pyridine as a probe molecule. It was found that the SERS intensity depended on the Co shell thickness of the core-shell nanoparticles and was weakened with the increasing shell thickness. The SERS intensity of these AucoreCoshell nanoparticles is found to be about twenty times higher than that obtained on an electrochemically roughened cobalt electrode. 展开更多
关键词 AU core CO shell纳米粒子 表面增强拉曼光谱 循环伏安
在线阅读 下载PDF
考虑二阶邻居信息的K-shell重要节点识别算法研究
11
作者 姚曦煜 谢玉峰 《现代信息科技》 2025年第1期40-44,共5页
在真实网络中,找出一些关键的节点进行保护能够有效维持系统的稳定,同时对于复杂网络中的病毒控制与传播、交通网络的故障控制、社交网络中影响力识别等都有重要作用。在现有关键节点识别算法K-shell的基础上,提出了一种考虑二阶邻居信... 在真实网络中,找出一些关键的节点进行保护能够有效维持系统的稳定,同时对于复杂网络中的病毒控制与传播、交通网络的故障控制、社交网络中影响力识别等都有重要作用。在现有关键节点识别算法K-shell的基础上,提出了一种考虑二阶邻居信息的K-shell的关键节点识别算法,该算法综合考虑节点的全局与局部信息,同时引入节点的一阶邻居节点和二阶邻居节点的相关信息,计算节点在网络中的重要性。为了验证该算法的性能,以随机攻击和蓄意攻击两种攻击方式在网络中的节点进行仿真实验,实验结果表明,考虑二阶邻居信息的K-shell方法能够有效地检测节点的重要性,识别网络中的关键节点。 展开更多
关键词 复杂网络 节点识别 K-shell算法 二阶邻居
在线阅读 下载PDF
ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes 被引量:10
12
作者 Chunmei Zhu Ying He +3 位作者 Yijun Liu Natalia Kazantseva Petr Saha Qilin Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期124-131,I0005,共9页
Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not ... Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not only act as a scaffold for growth of MOF/PANI shell but also as Zn source for the formation of MOF. The morphology of ZnO@MOF@PANI composite is greatly influenced by the number of PANI electrodeposition cycles. Their structural and electrochemical properties were characterized with different techniques. The results indicate that the Zn O@MOF@PANI with 13 CV cycles of PANI deposition demonstrates the maximum specific capacitance of 340.7 F g-1 at 1.0 A g-1, good rate capability with84.3% capacitance retention from 1.0 to 10 A g-1 and excellent cycling life of 82.5% capacitance retention after 5000 cycles at high current density of 2.0 A g-1. This optimized core-shell nanoarchitecture endows the composite electrode with short ion diffusion pathway, rapid ion/electron transfer and high utilization of active materials, which thus result in excellent electrochemical performance of the ternary composite. 展开更多
关键词 Metal-oragnic framework POLYANILINE core-shell NANOARRAYS SUPERCAPACITOR Electrochemical properties
在线阅读 下载PDF
Nb_2O_5-carbon core-shell nanocomposite as anode material for lithium ion battery 被引量:5
13
作者 Ge Li Xiaolei Wang Xueming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期357-362,共6页
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c... Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery. 展开更多
关键词 niobium pentoxide core-shell long cycle life high performance anode lithium ion battery
在线阅读 下载PDF
Catalytic Performance of MFI/MFI Core-Shell Zeolites in Benzene Methylation 被引量:4
14
作者 Zhang Baozhong Liu Xiaopeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期94-99,共6页
Thanks to its 10-membered-ring structure with a three-dimensional uniform pore system and acid distribution, ZSM-5 zeolite is a key catalytic material for benzene methylation with methanol. After epitaxial inter-growt... Thanks to its 10-membered-ring structure with a three-dimensional uniform pore system and acid distribution, ZSM-5 zeolite is a key catalytic material for benzene methylation with methanol. After epitaxial inter-growth of a dense layer of shell consisting of nano-particles on the conventional ZSM-5 crystal surface, the MFI/MFI core-shell zeolite not only has much more active surface area, but also can enrich the diffusion and reaction pore system at the same time, which can significantly improve its catalytic performance. In contrast to the performance of conventional ZSM-5 catalyst, an indepth investigation on the reaction parameters of benzene methylation over the core-shell structured zeolite is of great significance. 展开更多
关键词 core-shell zeolite methanol BENZENE methylation process PARAMETERS
在线阅读 下载PDF
Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries 被引量:4
15
作者 Juan Zhang Huan Ye +1 位作者 Yaxia Yin Yuguo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期308-314,共7页
Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and... Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and the shuttling of highly dissoluble lithium polysulfides generated during the cycles.Loading sulfur into porous carbons has been proved to be an effective approach to alleviate these issues.Mesoporous and microporous carbons have been widely used for sulfur accommodation,but mesoporous carbons have poor sulfur confinement,whereas microporous carbons are impeded by low sulfur loading rates.Here,a core-shell carbon,combining both the merits of mesoporous carbon with large pore volume and microporous carbon with effective sulfur confinement,was prepared by coating the mesoporous CMK-3 with a microporous carbon(MPC) shell and served as the carbon host(CMK-3 @MPC) to accommodate sulfur.After sulfur infusion,the as-obtained S/(CMK-3@MPC) cathode delivered a high initial capacity of up to 1422 mAh·g-1 and sustained 654 mAh·g-1 reversible specific capacity after 36 cycles at 0.1 C.The good performance is ascribed to the unique core-shell structure of the CMK-3@MPC matrix,in which sulfur can be effectively confined within the meso/microporous carbon host,thus achieving simultaneously high electrochemical utilization. 展开更多
关键词 core-shell structure microporous carbon coating mesoporous carbon lithium-sulfur batteries sulfur cathode
在线阅读 下载PDF
Electrocatalysts based on metal@carbon core@shell nanocomposites:An overview 被引量:4
16
作者 Yi Peng Shaowei Chen 《Green Energy & Environment》 SCIE 2018年第4期335-351,共17页
Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class ... Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core(elemental composition, core size, etc.) and carbon shell(doping,layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research. 展开更多
关键词 Metal@carbon core@shell nanocomposite Electrocatalysis Hydrogen evolution REACTION OXYGEN evolution REACTION OXYGEN reduction REACTION
在线阅读 下载PDF
Facile preparation of core-shell Si@Li4Ti5O12 nanocomposite as large-capacity lithium-ion battery anode 被引量:4
17
作者 Mengjing Liu Hanyang Gao +2 位作者 Guoxin Hu Kunxu Zhu Hao Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期89-98,I0004,共11页
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi... As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries. 展开更多
关键词 Si@Li4Ti5O12 composites core-shell nanoparticles In-situ self-assembly Decompressive boiling concentration Lithium-ion battery anode
在线阅读 下载PDF
Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium–sulfur batteries 被引量:3
18
作者 Xiangyang Zhou Feng Chen Juan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期448-455,共8页
A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated vi... A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated via a facile solution-based method. The S@PPy nanoparticles are synthesized by in situ chemical oxidative polymerization of pyrrole on the surface of sulfur particles,and then graphene sheets are covered outside the S@PPy nanoparticles,forming a three-dimensional conductive network. When evaluating the electrochemical performance of S@PPy/GS in a lithium–sulfur battery,it delivers large discharge capacity,excellent cycle stability,and good rate capability. The initial discharge capacity is up to 1040 m Ah/g at 0.1 C,the capacity can remain 537.8 m Ah/g at 0.2 C after 200 cycles,even at a higher rate of 1 C,the specific capacity still reaches 566.5 m Ah/g. The good electrochemical performance is attributed to the unique structure of S@PPy/GS,which can not only provide an excellent transport of lithium and electron ions within the electrodes,but also retard the shuttle effect of soluble lithium polysulfides effectively,thus plays a positive role in building better lithium-sulfur batteries. 展开更多
关键词 Nano sulfur Conductive polymer core@shell structure Graphene coating Lithium–sulfur battery
在线阅读 下载PDF
Core-shell structured 1,4-benzoquinone@TiO_2 cathode for lithium batteries 被引量:3
19
作者 Aikai Yang Xingchao Wang +3 位作者 Yong Lu Licheng Miao Wei Xie Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1644-1650,共7页
Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, lead... Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, leading to fast capacity decay. Here we report core-shell structured 1,4-benzoquinone@titaniumdioxide (BQ@TiO2) composite as cathode for lithium batteries. The composite cathode can deliver a highdischarge capacity of 441.2 mA h/g at 50 mA/g and a high capacity retention of 80.7% after 100 cycles. Thegood cycling performance of BQ@TiO2 composite can be attributed to the suppressed dissolution of BQ,which results from the physical confinement effect of Ti02 shell and the strong interactions between BQand Ti02. Moreover, the combination of ex situ infrared spectra and density functional theory calculationsreveals that the active redox sites of BQ are carbonyl groups. This work provides an alternative way tomitigate the dissolution of small carbonyl compounds and thus enhance their cycling stability. 展开更多
关键词 Lithium batteries Organic cathode BENZOQUINONE Titanium dioxide core-shell structure Density functional theory
在线阅读 下载PDF
Structural response of aluminum core–shell particles in detonation environment 被引量:2
20
作者 Qing-Jie Jiao Qiu-Shi Wang +1 位作者 Jian-Xin Nie Hong-Bo Pei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期387-392,共6页
Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural... Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural response of aluminum core-shell particles before combustion is of great importance for the aluminum powder burning mechanism and its applications.In this paper,an aluminum particle combustion experiment in a detonation environment is conducted and analyzed;the breakage factors of aluminum particles shell in detonation environment are analyzed.The experiment results show that the aluminum particle burns in a gaseous state and condenses into a sub-micron particle cluster.The calculation and simulation demonstrate that the rupture of aluminum particle shell in the detonation environment is mainly caused by the impact of the detonation wave.The detonation wave impacts the aluminum particles,resulting in shell cracking,and due to the shrinkage-expansion of the aluminum core and stripping of the detonation product,the cracked shell is fractured and peeled with the aluminum reacting with the detonation product. 展开更多
关键词 ALUMINUM core-shell PARTICLES STRUCTURAL response ALUMINUM COMBUSTION aluminized explosives
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部