期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Flotation of copper oxide minerals:A review 被引量:11
1
作者 Qicheng Feng Wenhang Yang +3 位作者 Shuming Wen Han Wang Wenjuan Zhao Guang Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1351-1364,共14页
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi... Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed. 展开更多
关键词 copper oxide minerals Direct flotation Sulfidization flotation Activation flotation
在线阅读 下载PDF
Techniques of copper recovery from Mexican copper oxide ore 被引量:10
2
作者 CAO Zhan-fang ZHONG Hong LIU Guang-yi ZHAO Shu-juan 《Mining Science and Technology》 EI CAS 2009年第1期45-48,共4页
Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore c... Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning. 展开更多
关键词 copper oxide ore FLOTATION stirring leaching EXTRACTION
在线阅读 下载PDF
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:3
3
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure copper oxides nanowire arrays Cobalt oxidesflocs
在线阅读 下载PDF
Bioleaching of a kind of alkaline mixed copper oxide and sulphide mineral 被引量:2
4
作者 黄明清 吴爱祥 《Journal of Chongqing University》 CAS 2010年第4期177-184,共8页
We conducted two-stage acidification-bioleaching experiments to probe the feasibility of bioleaching for a kind of mixed alkaline copper oxide and sulphide mineral. We used the uniform design method for data analysis ... We conducted two-stage acidification-bioleaching experiments to probe the feasibility of bioleaching for a kind of mixed alkaline copper oxide and sulphide mineral. We used the uniform design method for data analysis and experimental optimization, with initial pH value, pulp density, inoculation of bacteria and ferrous iron concentration selected as the influential factors. Polynomial regression shows that the four factors sequentially influence the copper recovery by 14.430%, 8.555%, 1.982% and 3.895%. Acid equilibrium in the bioleaching system is mainly influenced by alkaline gangue content, chemical reactions and bacterial activity. A maximal portion of refractory copper extracted reaches 71.08%. The dynamic analysis of copper recovery indicates that bioleaching goes through a lag leaching phase, prime leaching phase and leaching stationary phase corresponding to the growth phases of bacteria. Compared with the predicted value of 80.87%, the confirmatory experiment observes a 78.21% copper recovery under the optimal conditions of pH of 1.5, pulp density of 5%, bacteria inoculation of 30% and initial ferrous iron concentration of 9 g L-1. Results suggest that bioleaching is technically feasible to improving total copper recovery. 展开更多
关键词 alkaline mixed copper oxide and sulphide mineral BIOLEACHING uniform design copper recovery acid equilibrium
在线阅读 下载PDF
Low temperature H_2S sensor based on copper oxide/tin dioxide thick film 被引量:1
5
作者 Hongbing Wei Hongwen Sun +4 位作者 Sumei Wang Guangzhi Chen Yingtao Hou Hongwen Guo Xiaodong Ma 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期393-396,共4页
Nanostructured tin dioxide (SnO2) powders were prepared by a sol-gel dialytic process and and the doping of CuO on it was completed by a deposition-precipitation method.The thick film sensors were fabricated from th... Nanostructured tin dioxide (SnO2) powders were prepared by a sol-gel dialytic process and and the doping of CuO on it was completed by a deposition-precipitation method.The thick film sensors were fabricated from the CuO/SnO2 polycrystalline powders.Sensing behavior of the sensor was investigated with various gases including CO,H2,NH3,hexane,acetone,ethanol,methanol and H2S in air.The as-synthesized gas sensor had much better response to H2S than to other gases.At the same time,the CuO/SnO2 sensor had enough sensitivity,together with fast response and recovery,to distinguish H2S from those gases at 160 and 210 ℃.Therefore,it might have promising applications in the future. 展开更多
关键词 LOW-TEMPERATURE H2S copper oxide/tin dioxide gas sensors SELECTIVITY
在线阅读 下载PDF
Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
6
作者 Hussein T.Salloom Rushdi I.Jasim +3 位作者 Nadir Fadhil Habubi Sami Salman Chiad M Jadan Jihad S.Addasi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期698-702,共5页
We investigate the spectral response of nanostructured copper oxides thin film. Gold was doped in two different concentrations(2% and 4%) using the spray method. A novel ammonia gas sensor at various concentrations(0... We investigate the spectral response of nanostructured copper oxides thin film. Gold was doped in two different concentrations(2% and 4%) using the spray method. A novel ammonia gas sensor at various concentrations(0–500 ppm)was fabricated by replacing CuO films with a clad region. In addition, the effect of gold doping on structural, optical,and morphological properties has been demonstrated. The study shows that the spectral intensity increases linearly with ammonia concentration. The 4% Au doped CuO presents higher sensitivity compared with 2% doped and pure copper oxides. Time response characteristics of the sensor are also reported. 展开更多
关键词 nanostructured thin films gold-doped copper oxide gas sensors optical properties
在线阅读 下载PDF
Heterogeneous Cu_(x)O Nano‑Skeletons from Waste Electronics for Enhanced Glucose Detection
7
作者 Yexin Pan Ruohan Yu +8 位作者 Yalong Jiang Haosong Zhong Qiaoyaxiao Yuan Connie Kong Wai Lee Rongliang Yang Siyu Chen Yi Chen Wing Yan Poon Mitch Guijun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期554-568,共15页
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica... Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives. 展开更多
关键词 copper oxide Electron 3D tomography E-WASTE Glucose detection Electrochemical activation
在线阅读 下载PDF
Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst 被引量:10
8
作者 Zhengbin Pan Ershuan Han +6 位作者 Jingui Zheng Jing Lu Xiaolin Wang Yanbin Yin Geoffrey INWaterhouse Xiuguo Wang Peiqiang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期34-46,共13页
Photoelectrocatalytic reduction of CO2 to fuels has great potential for reducing anthropogenic CO2 emissions and also lessening our dependence on fossil fuel energy.Herein,we report the successful development of a nov... Photoelectrocatalytic reduction of CO2 to fuels has great potential for reducing anthropogenic CO2 emissions and also lessening our dependence on fossil fuel energy.Herein,we report the successful development of a novel photoelectrocatalytic catalyst for the selective reduction of CO2 to methanol,comprising a copper catalyst modified with flower-like cerium oxide nanoparticles(CeO2 NPs)(a n-type semiconductor)and copper oxide nanoparticles(CuO NPs)(a p-type semiconductor).At an applied potential of−1.0 V(vs SCE)under visible light irradiation,the CeO2 NPs/CuO NPs/Cu catalyst yielded methanol at a rate of 3.44μmol cm^−2 h^−1,which was approximately five times higher than that of a CuO NPs/Cu catalyst(0.67μmol cm^−2 h^−1).The carrier concentration increased by^108 times when the flower-like CeO2 NPs were deposited on the CuO NPs/Cu catalyst,due to synergistic transfer of photoexcited electrons from the conduction band of CuO to that of CeO2,which enhanced both photocatalytic and photoelectrocatalytic CO2 reduction on the CeO2 NPs.The facile migration of photoexcited electrons and holes across the p–n heterojunction that formed between the CeO2 and CuO components was thus critical to excellent light-induced CO2 reduction properties of the CeO2 NPs/CuO NPs/Cu catalyst.Results encourage the wider application of composite semiconductor electrodes in carbon dioxide reduction. 展开更多
关键词 CO2 reduction PHOTOELECTROCATALYSIS p–n heterojunction Cerium oxide copper oxide
在线阅读 下载PDF
High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuO_(x) catalyst 被引量:5
9
作者 Donghui Li Jie Sun +1 位作者 Rong Ma Jinjia Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期460-469,I0012,共11页
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly... Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production. 展开更多
关键词 Solar-driven Hydrogen production Photo-thermo-catalysis copper oxide Methanol steam reforming Reaction kinetics optimization
在线阅读 下载PDF
Biosynthesis of Flower-Shaped CuO Nanostructures and Their Photocatalytic and Antibacterial Activities 被引量:5
10
作者 Hafsa Siddiqui MSQureshi Fozia Zia Haque 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期224-234,共11页
Copper oxide nanoflowers(CuO-NFs)have been synthesized through a novel green route using Tulsi leaves-extracted eugenol(4-allyl-2-methoxyphenol)as reducing agent.Characterizations results reveal the growth of crystall... Copper oxide nanoflowers(CuO-NFs)have been synthesized through a novel green route using Tulsi leaves-extracted eugenol(4-allyl-2-methoxyphenol)as reducing agent.Characterizations results reveal the growth of crystalline singlephase CuO-NFs with monoclinic structure.The prepared CuO-NFs can effectively degrade methylene blue with 90%efficiency.They also show strong barrier against E.coli(27±2 mm)at the concentration of 100μg mL−1,while at the concentration of 25μg mL−1 weak barrier has been found against all examined bacterial organisms.The results provide important evidence that CuO-NFs have sustainable performance in methylene blue degradation as well as bacterial organisms. 展开更多
关键词 copper oxide O.Sanctum EUGENOL BIOSYNTHESIS PHOTOCATALYSIS ANTIBACTERIAL
在线阅读 下载PDF
High performance of TiO_(2)/Cu_(x)O photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell 被引量:1
11
作者 Harin Yoo Doohwan Lee Jung Hyeun Kim 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期704-711,共8页
Photocatalysts for harvesting solar energy to either electricity or chemical fuels have attracted much attention recently, but they have big obstacles such as wide bandgaps and rapid charge recombinations to overcome ... Photocatalysts for harvesting solar energy to either electricity or chemical fuels have attracted much attention recently, but they have big obstacles such as wide bandgaps and rapid charge recombinations to overcome for final applications. In this study, we investigates a useful method to utilize vanadium redox pairs, which are commonly applied for vanadium redox flow batteries, to diminish charge recombinations and thus to enhance photocurrent response in regenerative solar energy storage. The results reveal significant improvements in photocurrent density by forming cuprous and cupric oxides in TiO_(2)/Cu_(x)O electrodes under solar AM 1.5 illuminations using the vanadium photoelectrochemical storage cell at 0.025 mol L^(-1) of vanadium redox species in the acid electrolytes. In addition, the stabilized photocurrent density of the copper content optimized TiO_(2)/Cu_(x)O electrodes is almost tripled from the TiO_(2) only electrode because the charge recombinations can be mitigated with the content optimized TiO_(2)/Cu_(x)O electrodes. Therefore, the optimized TiO_(2)/Cu_(x)O electrode results in the highest charge storing performance in the catholyte chamber, and the roles of vanadium redox species are also clearly demonstrated. 展开更多
关键词 PHOTOCATALYST PHOTOELECTROCHEMICAL copper oxide Charge recombination Redox pairs
在线阅读 下载PDF
Surface modification of Cu_(2)O with stabilized Cu^(+) for highly efficient and stable CO_(2) electroreduction to C_(2+) chemicals 被引量:1
12
作者 Ziyu Zhou Shuyu Liang +4 位作者 Jiewen Xiao Tianyu Zhang Min Li Wenfu Xie Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期277-285,共9页
Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for cat... Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts. 展开更多
关键词 CO_(2)RR copper oxide Metal-organic Framework Core-shell Structure C_(2+)Chemicals
在线阅读 下载PDF
Cu^+-incorporated TiO_2 overlayer on Cu_2O nanowire photocathodes for enhanced photoelectrochemical conversion of CO_2 to methanol 被引量:3
13
作者 Kangha Lee Seokwon Lee +4 位作者 Hyunjin Cho Sunil Jeong Whi Dong Kim Sooho Lee Doh C.Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期264-270,共7页
In this paper, we report photoelectrochemical(PEC) conversion of carbon dioxide(CO_2) using photocathodes based on Cu_2O nanowires(NWs) overcoated with Cu~+-incorporated crystalline TiO_2(TiO_2–Cu~+ )shell.... In this paper, we report photoelectrochemical(PEC) conversion of carbon dioxide(CO_2) using photocathodes based on Cu_2O nanowires(NWs) overcoated with Cu~+-incorporated crystalline TiO_2(TiO_2–Cu~+ )shell. Cu_2O NW photocathodes show remanent photocurrent of 5.3% after 30 min of PEC reduction of CO_2.After coating Cu_2O with TiO_2–Cu~+ overlayer, the remanent photocurrent is 27.6%, which is an increase by5.2 fold. The charge transfer resistance of Cu_2O/TiO_2–Cu~+ is 0.423 k/cm2, whereas Cu_2O photocathode shows resistivity of 0.781 k/cm2 under irradiation. Mott–Schottky analysis reveals that Cu~+ species embedded in TiO_2 layer is responsible for enhanced adsorption of CO_2 on TiO_2 surface, as evidenced by the decrease of capacitance in the Helmholtz layer. On account of these electrochemical and electronic effects by the Cu~+ species, the Faradaic efficiency(FE) of photocathodes reaches as high as 56.5% when TiO_2–Cu~+ is added to Cu_2O, showing drastic increase from 23.6% by bare Cu_2O photocathodes. 展开更多
关键词 Photoelectrochemical CO2 reductionMethanol generation copper oxide Titanium dioxide Cu+ catalyst
在线阅读 下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
14
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry copper oxide
在线阅读 下载PDF
Point-defect engineering of nanoporous CuBi_(2)O_(4) photocathode via rapid thermal processing for enhanced photoelectrochemical activity 被引量:2
15
作者 Li Qu Runfa Tan +5 位作者 Arumugam Sivanantham Min Je Kang Yoo Jae Jeong Dong Hyun Seo Sungkyu Kim In Sun Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期201-209,I0007,共10页
Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized ... Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting. 展开更多
关键词 NANOPOROUS copper bismuth oxide Rapid thermal processing copper vacancy Charge transport
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部