Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl...High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.展开更多
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev...Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai...Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification.展开更多
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe...Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio...This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.展开更多
业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据...业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。展开更多
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.
基金National Natural Science Foundation of China(1180500311947102+4 种基金12004005)Natural Science Foundation of Anhui Province(2008085MA162008085QA26)University Synergy Innovation Program of Anhui Province(GXXT-2022-039)State Key Laboratory of Advanced Electromagnetic Technology(Grant No.AET 2024KF006)。
文摘High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.
基金Projects(51822407,51774327,51664016)supported by the National Natural Science Foundation of China。
文摘Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported in part by the National Natural Science Foundation of China ( NSFC ) ( 11772093)ARC ( FT140101152)
文摘Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification.
基金supported by the National Natural Science Foundation of China (61471021)。
文摘Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金supported by the National Natural Science Foundation of China(61233010 61305106)+2 种基金the Shanghai Natural Science Foundation(17ZR1409700 18ZR1415300)the basic research project of Shanghai Municipal Science and Technology Commission(16JC1400900)
文摘This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop.
文摘业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。