A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homo...A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
As traditional two-parameter constant false alarm rate (CFAR) target detec-tion algorithms in SAR images ignore target distribution, their performances are not the best or near best. As the resolution of SAR images ...As traditional two-parameter constant false alarm rate (CFAR) target detec-tion algorithms in SAR images ignore target distribution, their performances are not the best or near best. As the resolution of SAR images increases, small targets present more pixels in SAR images. So the target distribution is of much significance. Distribution-based CFAR detection algorithm is presented. We unite the pixels around the test cell, and estimate the distribution of test cell by them. Generalized Likelihood Ratio Test (GLRT) is used to deduce the detectors. The performance of the distribution-based CFAR (DBCFAR) detectors is analyzed theoretically. False alarms of DBCFAR detection are fewer than those of CFAR at the same detection rate. Finally experiments are done and the results show the performance of DBCFAR is out of conventional CFAR. False alarms of DBCFAR detection are concentrated while those of CFAR detection are dispersive.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm na...The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61102158)the China Postdoctoral Science Foundation(2011M500667)
文摘A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
文摘As traditional two-parameter constant false alarm rate (CFAR) target detec-tion algorithms in SAR images ignore target distribution, their performances are not the best or near best. As the resolution of SAR images increases, small targets present more pixels in SAR images. So the target distribution is of much significance. Distribution-based CFAR detection algorithm is presented. We unite the pixels around the test cell, and estimate the distribution of test cell by them. Generalized Likelihood Ratio Test (GLRT) is used to deduce the detectors. The performance of the distribution-based CFAR (DBCFAR) detectors is analyzed theoretically. False alarms of DBCFAR detection are fewer than those of CFAR at the same detection rate. Finally experiments are done and the results show the performance of DBCFAR is out of conventional CFAR. False alarms of DBCFAR detection are concentrated while those of CFAR detection are dispersive.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金This project was supported by the National Natural Science Foundation of China (60232010).
文摘The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.