This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e...This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.展开更多
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in...According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.展开更多
Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet ...Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet connected to the aorta. This pump was designed based on the magnetic driven centrifugal pump with a unique small washout hole constructed inside the impeller to generate the washout flow passage to prevent the stagnation at the region underneath and around the rotor. Computational fluid dynamics( CFD) was adopted in this study to assess the performance and optimize the design to avoid recirculation and high shear stress which is the main cause of stagnation and blood damage. Transient simulation was used for this study due to the asymmetric design of the washout hole and the complication of the bottom support of the impeller that has a risk of thrombosis,also,it was used to predict the variation of hydraulic performance caused by the rotation of the impeller and pulsed flow at the pump inlet. The simulation results show no excessive stress and no recirculation observed within the computational domain; in addition,the research result also provides information for further optimization and development to the pump.展开更多
为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi...为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。展开更多
The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper ...The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper mantle was simulated as fluid-saturated porous rocks, while the upper aesthenospheric part of the mantle was simulated as viscous fluids. Since the whole lithosphere was computationally simulated, the dynamic interaction between the crust and the upper mantle was appropriately considered. In particular, the mixing of mantle fluids and crustal fluids was simulated in the corresponding computational model. The related computational simulation results from an example problem demonstrate that the mantle fluids can flow into the crust and mix with the crustal fluids due to the resulting convective flows in the crust-mantle system. Likewise, the crustal fluids can also flow into the upper mantle and mix with the mantle fluids. This kind of fluids mixing and exchange is very important to the better understanding of the governing processes that control the ore body formation and mineralization in the upper crust of the Earth.展开更多
文摘This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.
基金Project(51074027)supported by the National Natural Science Foundation of China
文摘According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.
文摘Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet connected to the aorta. This pump was designed based on the magnetic driven centrifugal pump with a unique small washout hole constructed inside the impeller to generate the washout flow passage to prevent the stagnation at the region underneath and around the rotor. Computational fluid dynamics( CFD) was adopted in this study to assess the performance and optimize the design to avoid recirculation and high shear stress which is the main cause of stagnation and blood damage. Transient simulation was used for this study due to the asymmetric design of the washout hole and the complication of the bottom support of the impeller that has a risk of thrombosis,also,it was used to predict the variation of hydraulic performance caused by the rotation of the impeller and pulsed flow at the pump inlet. The simulation results show no excessive stress and no recirculation observed within the computational domain; in addition,the research result also provides information for further optimization and development to the pump.
文摘为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。
基金Project(10872219) supported by the National Natural Science Foundation of China
文摘The finite element method was used to solve fluid dynamic interaction problems between the crust and mantle of the Earth. To consider different mechanical behaviours, the lithosphere consisting of the crust and upper mantle was simulated as fluid-saturated porous rocks, while the upper aesthenospheric part of the mantle was simulated as viscous fluids. Since the whole lithosphere was computationally simulated, the dynamic interaction between the crust and the upper mantle was appropriately considered. In particular, the mixing of mantle fluids and crustal fluids was simulated in the corresponding computational model. The related computational simulation results from an example problem demonstrate that the mantle fluids can flow into the crust and mix with the crustal fluids due to the resulting convective flows in the crust-mantle system. Likewise, the crustal fluids can also flow into the upper mantle and mix with the mantle fluids. This kind of fluids mixing and exchange is very important to the better understanding of the governing processes that control the ore body formation and mineralization in the upper crust of the Earth.