期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
融合XGBoost和SVR的滑坡位移预测
1
作者 王惠琴 梁啸 +4 位作者 何永强 李晓娟 张建良 郭瑞丽 刘宾灿 《湖南大学学报(自然科学版)》 北大核心 2025年第4期149-158,共10页
利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物... 利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物优化算法(hunter-prey optimizer,HPO)优化支持向量回归(support vector regression,SVR)的超参数而构建了一种组合预测模型(HPO-SVR)以修正XGBoost的预测结果.两组滑坡位移实测数据表明:HPO算法通过不断更新猎人与猎物位置的动态寻优策略,获得了更加合理的SVR的超参数.相对于XGBoost、SVR,以及其与粒子群优化算法、遗传算法和HPO的组合预测模型而言,XGBoost-HPO-SVR组合模型在阳屲山滑坡和脱甲山滑坡位移预测中取得了良好的效果,其均方根误差和平均绝对误差分别为3.505和1.357,0.550和0.538. 展开更多
关键词 极端梯度提升 支持向量回归 猎人猎物优化算法 滑坡位移预测
在线阅读 下载PDF
基于ICOA-XGBoost的光伏阵列复合故障诊断研究
2
作者 张子洵 魏业文 +2 位作者 张轲钦 方豪 吴先用 《太阳能学报》 北大核心 2025年第5期251-259,共9页
为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进C... 为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进Circle混沌映射、Levy飞行和t分布随机扰动的ICOA算法与麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)和长鼻浣熊算法(COA)相比较,其在寻优能力、稳定性和收敛速度方面展现出优越性。随后,利用改进的ICOA算法优化XGBoost模型,有效解决了模型初始化参数的设置问题。实验结果显示,结合9维故障特征向量的ICOA-XGBoost模型在故障诊断精度上达到97.23%,优于其他对比模型,证实了所提方法的可行性和有效性。 展开更多
关键词 光伏阵列 故障诊断 改进长鼻浣熊算法 极端梯度提升
在线阅读 下载PDF
基于频率自适应的Buck-Boost矩阵变换器主电路参数优选方法
3
作者 杨昭 张小平 钟达栩 《太阳能学报》 北大核心 2025年第7期290-297,共8页
提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定... 提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定输出频率下的最优主电路参数采用数值拟合方法研究确定其间变化规律的函数关系式,最后通过构建仿真模型与硬件实验装置对其效果进行验证。 展开更多
关键词 Buck-boost矩阵变换器 频率自适应 参数优化 樽海鞘群算法 多目标优化 数值拟合
在线阅读 下载PDF
基于MIDBO-BP-Adaboost的高铁路基沉降预测
4
作者 贺全鹏 司涌波 李少远 《北京交通大学学报》 北大核心 2025年第3期182-192,共11页
针对温度、湿度等因素影响带来的高铁路基沉降问题,提出一种改进的蜣螂优化算法(My Improved Dung Beetle Optimization Algorithm,MIDBO)-反向传播(Back Propagation,BP)神经网络-自适应提升算法(Adaptive Boosting,Adaboost)组合预测... 针对温度、湿度等因素影响带来的高铁路基沉降问题,提出一种改进的蜣螂优化算法(My Improved Dung Beetle Optimization Algorithm,MIDBO)-反向传播(Back Propagation,BP)神经网络-自适应提升算法(Adaptive Boosting,Adaboost)组合预测模型.首先,为解决蜣螂优化算法易陷入局部最优和复杂工程应用效果不佳的缺陷,提出一种复合混沌映射、模拟退火算法、非线性指数动态权重系数多策略融合的MIDBO算法;然后,利用MIDBO算法对BP神经网络进行优化,再与Adaboost算法结合,建立了MIDBO-BP-Adaboost模型;最后,将不同模型应用于兰新高速铁路进行预测分析.研究结果表明:MIDBO算法有效优化了BP神经网络,提高了模型精度;Adaboost算法提高了模型的稳健性和泛化能力;与BP预测模型相比,MIDBO-BP-Adaboost模型的平均绝对误差、均方根误差、平均绝对百分比误差分别减小63.81%、63.84%、62.26%,拟合系数提高18.82%.研究成果可以为兰新高铁路基沉降预测提供参考. 展开更多
关键词 交通信息工程及控制 高速铁路 路基沉降 蜣螂优化算法 反向传播神经网络 自适应提升算法
在线阅读 下载PDF
基于XGBoost算法划痕损伤PVC-P土工膜力学性能预测
5
作者 张宪雷 刘建群 张文慧 《水电能源科学》 北大核心 2025年第5期111-115,共5页
面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯... 面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯度提升(XGBoost)算法的预测模型,将该模型预测结果与随机森林(RF)算法预测结果进行比较,选用平均绝对误差(M MAE)、平均绝对百分比误差(M_(MAPE))、均方根误差(R_(RMSE))和决定系数(R^(2))作为评价指标评估了预测精度,并运用SHAP算法获得影响作用较大的划痕损伤阈值。结果表明,基于XGBoost算法的预测模型预测精度更高,SHAP法能够合理解释模型的预测结果,划痕角度是影响损伤后力学性能的主要因素。研究结果为工程技术人员准确预判划痕损伤PVC-P土工膜力学性能提供了参考。 展开更多
关键词 极端梯度提升树(XGboost)算法 随机森林(RF)算法 力学性能预测 PVC-P土工膜 断裂强度 断裂延伸率
在线阅读 下载PDF
基于BOA-XGBoost的沥青路面抗滑性能预测方法
6
作者 许新权 户媛姣 +1 位作者 翁宇涵 何伟杰 《重庆交通大学学报(自然科学版)》 北大核心 2025年第6期35-44,共10页
道路表面纹理是影响抗滑性能的关键因素。为深入研究其影响机理,解决多特征数据条件下传统预测方法精度受限的问题,提出了一种基于贝叶斯优化(BOA)和极端梯度提升(XGBoost)融合的路面抗滑性能评估模型。制备了不同级配类型的沥青混合料... 道路表面纹理是影响抗滑性能的关键因素。为深入研究其影响机理,解决多特征数据条件下传统预测方法精度受限的问题,提出了一种基于贝叶斯优化(BOA)和极端梯度提升(XGBoost)融合的路面抗滑性能评估模型。制备了不同级配类型的沥青混合料试件,基于摆式摩擦仪和三维激光扫描设备分别获取试件表面的摩擦数据和三维纹理数据;提取高度、波长、形状参数用以描述纹理结构,并进行纹理特征重要性分析,明确显著影响抗滑性能因子;引入贝叶斯优化算法的搜索极端梯度来提升模型的最优关键参数,并构建了抗滑性能预估模型。研究结果表明:所提出的模型与对比模型相比,其精度更高,相关系数R^(2)=0.8906,分别比对比模型提升了25.2%、13.0%、15.1%,能有效地关联纹理特征与路面抗滑性能。 展开更多
关键词 道路工程 路面抗滑性能 三维纹理 特征重要性分析 贝叶斯优化算法 极端梯度提升
在线阅读 下载PDF
基于Boosting算法的垃圾邮件过滤方法研究 被引量:7
7
作者 柴宝仁 谷文成 +2 位作者 牛占云 周宏君 王克生 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期79-83,共5页
为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指... 为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指标,构建了垃圾邮件过滤器的评价体系,利用该评价体系,针对基于Boosting算法所构造的垃圾邮件过滤器对垃圾邮件的过滤实验所得到的数据进行了测试和评估,测试和评估的结果验证了Boosting算法在垃圾邮件过滤中的有效性,其性能优于传统的贝叶斯算法. 展开更多
关键词 boosting算法 垃圾邮件 过滤 分类器 评价
在线阅读 下载PDF
基于Boosting算法的文本自动分类器设计 被引量:13
8
作者 董乐红 耿国华 周明全 《计算机应用》 CSCD 北大核心 2007年第2期384-386,共3页
Boosting算法是目前流行的一种机器学习算法。采用一种改进的Boosting算法Adaboost.MH^(KR)作为分类算法,设计了一个文本自动分类器,并给出了评估方法和结果。评价表明,该分类器有很好的分类精度。
关键词 文本分类 机器学习 boosting算法
在线阅读 下载PDF
不均衡数据下基于CS-Boosting的故障诊断算法 被引量:6
9
作者 姚培 王仲生 +1 位作者 姜洪开 刘贞报 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期111-115,169,共5页
针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的... 针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的惩罚因子,并通过决策规则的训练使代价损失函数最小化。将该算法应用到滚动轴承故障诊断中,并与传统的Adaboost算法进行对比。试验结果表明,在转子系统不能获取更多故障数据的情况下,该算法的故障诊断性能较其他算法有明显的提高。 展开更多
关键词 代价敏感度 滚动轴承 boosting算法 CS—boosting 代价损失函数
在线阅读 下载PDF
基于对象的Boosting方法自动提取高分辨率遥感图像中建筑物目标 被引量:15
10
作者 孙显 王宏琦 张正 《电子与信息学报》 EI CSCD 北大核心 2009年第1期177-181,共5页
遥感图像空间分辨率的提高,在极大丰富地物目标信息含量的同时,也使得一些传统的目标提取方法受到较大挑战。该文结合基于对象的思想和Boosting算法,提出一种新的针对高分辨率遥感图像中建筑物自动提取的方法。该方法通过构建对象网络... 遥感图像空间分辨率的提高,在极大丰富地物目标信息含量的同时,也使得一些传统的目标提取方法受到较大挑战。该文结合基于对象的思想和Boosting算法,提出一种新的针对高分辨率遥感图像中建筑物自动提取的方法。该方法通过构建对象网络关联图像分割和识别,有效解决了一般方法中采用预先定义形状和大小的滑动窗检测目标时效果不佳的问题。然后针对建筑物的目标特性训练有效特征分类器,并利用标记置信度来综合分析图像的各类信息,完成目标提取及后续处理。实验结果表明,该方法可用于提取多种类型和结构的建筑物,准确率高、鲁棒性好,具有较高的应用价值。 展开更多
关键词 目标识别 建筑物提取 基于对象 多尺度分割 boosting算法
在线阅读 下载PDF
基于Boosting方法的人脸检测 被引量:8
11
作者 陈爱斌 夏利民 赵桂敏 《计算机工程与应用》 CSCD 北大核心 2004年第3期50-52,共3页
该文提出一种基于Boosting方法的人脸检测算法。先用特征脸方法构造一个基于重建图像信噪比的阈值函数用于人脸检测,在此基础上,该文利用Boosting方法构造一个基于信噪比阈值的检测函数序列,然后以一定的方式将它们组合成一个总检测函数... 该文提出一种基于Boosting方法的人脸检测算法。先用特征脸方法构造一个基于重建图像信噪比的阈值函数用于人脸检测,在此基础上,该文利用Boosting方法构造一个基于信噪比阈值的检测函数序列,然后以一定的方式将它们组合成一个总检测函数,据此判别一幅图像是否为人脸图像。实验结果显示,这种方法明显提高了检测性能。 展开更多
关键词 人脸检测 特征脸 信噪比 boosting方法 模式识别
在线阅读 下载PDF
自适应梯度Boosting算法及多硝基芳香族化合物密度的主因子选择 被引量:2
12
作者 张海 丁毅涛 +3 位作者 王尧 胡荣祖 高红旭 赵凤起 《火炸药学报》 EI CAS CSCD 北大核心 2011年第2期12-16,共5页
用自适应梯度Boosting算法研究了影响多硝基芳香族化合物(PNACs)密度的主因子。选择分子结构描述码作影响特征参数,采用影响多硝基芳香族化合物密度的分子结构描述码,依据相关影响程度给出了相应分子结构描述码,预测密度值与文献值的相... 用自适应梯度Boosting算法研究了影响多硝基芳香族化合物(PNACs)密度的主因子。选择分子结构描述码作影响特征参数,采用影响多硝基芳香族化合物密度的分子结构描述码,依据相关影响程度给出了相应分子结构描述码,预测密度值与文献值的相对误差在10%以内。 展开更多
关键词 学习算法 boosting算法 多硝基芳香族化合物 主因子
在线阅读 下载PDF
用Boosting算法预测多硝基芳香族化合物的密度 被引量:5
13
作者 张海 王尧 +3 位作者 陈冰 胡荣祖 高红旭 赵凤起 《火炸药学报》 EI CAS CSCD 2007年第5期5-7,共3页
采用Boosting算法对多硝基芳香族化合物(PNACs)的密度进行预估。选用分子结构描述码作为输入特征参数。结果表明,PNACs的密度与其分子结构存在良好的相关性,与人工神经网络相比,Boosting算法对预测的准确性有显著提高,预测结果的相对误... 采用Boosting算法对多硝基芳香族化合物(PNACs)的密度进行预估。选用分子结构描述码作为输入特征参数。结果表明,PNACs的密度与其分子结构存在良好的相关性,与人工神经网络相比,Boosting算法对预测的准确性有显著提高,预测结果的相对误差都在8%以内。 展开更多
关键词 物理化学 人工神经网络 boosting算法 密度预估 多硝基芳香族化合物
在线阅读 下载PDF
基于Boosting的智能车辆多类障碍物识别 被引量:7
14
作者 沈志熙 黄席樾 +1 位作者 杨镇宇 韦金明 《计算机工程》 CAS CSCD 北大核心 2009年第14期241-242,246,共3页
提出一种基于Boosting集成学习的二叉树支持向量机(BBT-SVM)。根据城区交通环境中各类障碍物的出现概率、模式间的类间差异,设计适用于智能车辆障碍物识别的SVM树型结构。对每个节点SVM分类器采用Boosting集成学习方法进行改进,减少差... 提出一种基于Boosting集成学习的二叉树支持向量机(BBT-SVM)。根据城区交通环境中各类障碍物的出现概率、模式间的类间差异,设计适用于智能车辆障碍物识别的SVM树型结构。对每个节点SVM分类器采用Boosting集成学习方法进行改进,减少差错积累误差,提高分类精度和泛化能力。实验结果表明,该方法能有效地对城区交通场景中6类常规障碍物模式进行实时在线识别。 展开更多
关键词 智能车辆 障碍物识别 支持向量机 集成学习 boosting算法
在线阅读 下载PDF
线性回归模型的Boosting变量选择方法 被引量:3
15
作者 李毓 张春霞 王冠伟 《工程数学学报》 CSCD 北大核心 2015年第5期677-689,共13页
针对线性回归模型的变量选择问题,本文基于遗传算法提出了一种新的Boosting学习方法.该方法对每一训练个体赋予权重,以遗传算法作为Boosting的基学习算法,将带有权重分布的训练集作为遗传算法的输入进行变量选择.同时,根据前一次变量选... 针对线性回归模型的变量选择问题,本文基于遗传算法提出了一种新的Boosting学习方法.该方法对每一训练个体赋予权重,以遗传算法作为Boosting的基学习算法,将带有权重分布的训练集作为遗传算法的输入进行变量选择.同时,根据前一次变量选择效果的好坏更新训练集上的权重分布.重复上述步骤多次,最后以加权融合方式合并多次变量选择的结果.基于模拟和实际数据的试验结果表明,本文新提出的Boosting方法能显著提高传统遗传算法用于变量选择的质量,准确识别出与响应变量相关的协变量,这为线性回归模型的变量选择提供了一种有效的新方法. 展开更多
关键词 boosting算法 变量选择 集成学习 遗传算法 多样性
在线阅读 下载PDF
基于Boosting RBF神经网络的人脸年龄估计 被引量:6
16
作者 胡斓 夏利民 《计算机工程》 EI CAS CSCD 北大核心 2006年第19期199-201,共3页
年龄变化是引起人脸外观变化的主要原因,但每个人的生活方式不同,难以准确地从人脸图像中估计年龄。该文提出了一种基于人脸图像的年龄估计方法,用NMF方法提取人脸特征,通过RBF神经网络确定一个人脸图像及其相符年龄之间的估计函数。在... 年龄变化是引起人脸外观变化的主要原因,但每个人的生活方式不同,难以准确地从人脸图像中估计年龄。该文提出了一种基于人脸图像的年龄估计方法,用NMF方法提取人脸特征,通过RBF神经网络确定一个人脸图像及其相符年龄之间的估计函数。在此基础上,为了提高神经网络的泛化能力和故障诊断的准确性,利用Boosting方法构造一个基于神经网络的函数序列,将它们组合成一个加强的估计函数,实验结果表明了该方法的正确性。 展开更多
关键词 估计函数 RBF神经网络 boosting算法
在线阅读 下载PDF
基于boosting算法的交通事件检测 被引量:3
17
作者 孙熙 李夏苗 《交通运输系统工程与信息》 EI CSCD 2007年第5期37-41,共5页
提出一种新颖的基于boosting模糊分类的交通事件检测方法.该方法利用Boosting方法和遗传算法以迭代形式获取一组模糊规则及规则对应的权值,分类器以加权投票方式进行分类决策.运用Matlab进行了仿真分析,结果表明提出的交通事件检测算法... 提出一种新颖的基于boosting模糊分类的交通事件检测方法.该方法利用Boosting方法和遗传算法以迭代形式获取一组模糊规则及规则对应的权值,分类器以加权投票方式进行分类决策.运用Matlab进行了仿真分析,结果表明提出的交通事件检测算法利用较少样本数据即可快速实现交通事件检测. 展开更多
关键词 交通事件检测 遗传算法 boosting方法 模糊分类器
在线阅读 下载PDF
基于距离像幅度信息和Boosting的目标识别研究 被引量:1
18
作者 曹向海 刘宏伟 吴顺君 《系统工程与电子技术》 EI CSCD 北大核心 2007年第10期1628-1630,共3页
在基于高分辨雷达距离像的目标识别中,有研究者指出散射点的位置信息具有比幅度信息更好的鉴别能力。对此,将距离像各距离单元按照幅度大小进行重排,得到只保留散射点幅度信息而去除散射点位置信息的平移不变特征,它反映了目标的反射特... 在基于高分辨雷达距离像的目标识别中,有研究者指出散射点的位置信息具有比幅度信息更好的鉴别能力。对此,将距离像各距离单元按照幅度大小进行重排,得到只保留散射点幅度信息而去除散射点位置信息的平移不变特征,它反映了目标的反射特性,并利用Boosting算法和支持矢量机(SVM)进行了分类试验。基于实测数据的仿真结果表明,散射点的幅度同样是一种重要的识别信息。 展开更多
关键词 雷达 信号处理 目标识别 boosting算法
在线阅读 下载PDF
基于级联式Boosting方法的人脸检测 被引量:3
19
作者 朱文球 罗三定 《计算机应用》 CSCD 北大核心 2005年第9期2128-2130,共3页
提出一种基于级联式Boosting方法的人脸检测算法。先用PCA方法对人脸图像进行特征参数的提取,在此基础上,利用算法中的每一个Boosting分类器学习的历史信息,基于线性回归特征消除(RFE)策略,消除AdaBoost中的冗余,据此判别一幅图像是否... 提出一种基于级联式Boosting方法的人脸检测算法。先用PCA方法对人脸图像进行特征参数的提取,在此基础上,利用算法中的每一个Boosting分类器学习的历史信息,基于线性回归特征消除(RFE)策略,消除AdaBoost中的冗余,据此判别一幅图像是否为人脸图像。在ORL人脸图像库的仿真实验结果显示,这种方法明显提高了检测性能,证明了该算法是有效的。 展开更多
关键词 人脸检测 boosting算法 特征脸 主元分析
在线阅读 下载PDF
Boosting算法在基因表达谱样本分类中的应用 被引量:2
20
作者 刘全金 李颖新 《计算机工程与应用》 CSCD 北大核心 2008年第14期228-230,238,共4页
基于基因表达谱结构提出一种基因表达谱的样本分类方法。首先用基因的Bhattacharyya距离衡量其所含样本类别的信息,过滤Bhattacharyya距离较小的噪声基因;然后修改重复剪辑近邻算法,剔除噪声样本;再基于Boosting算法构建支持向量机组合... 基于基因表达谱结构提出一种基因表达谱的样本分类方法。首先用基因的Bhattacharyya距离衡量其所含样本类别的信息,过滤Bhattacharyya距离较小的噪声基因;然后修改重复剪辑近邻算法,剔除噪声样本;再基于Boosting算法构建支持向量机组合分类器;最后以结肠癌基因表达谱样本为例,进行了分类实验。实验结果表明该方法简单、有效,对基因表达谱样本的分类问题有强的实用性。 展开更多
关键词 BHATTACHARYYA距离 重复剪辑近邻法 boosting算法
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部