Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in ge...Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.展开更多
By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the s...By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the same community was measured and the complexity of plant communities at different altitudes was analyzed. The result from binary data of tree species in canopy tree indicated that the sub-plots in the communities, except subalpine Betula ermanii forest, showed comparatively high dissimilarity in species composition. Especially, the dissimilarity index (0.7) of broadleaved/Korean pine forest at low altitudes was obviously higher than other communities. The differences are not obvious between communities referring to dark coniferous forest. Comparatively, the dissimilarity in sub-plots of the communities at altitude of 1400 m was slightly higher than that of other communities, which reflected the complexity of tree species compositions of transitory-type communities. For subalpine Betula ermanii forest, tree species composition was simple and showed a high similarity between sub-plots. The results derived from binary data of shrub showed that the dissimilarity index of shrub species in broadleaved/Korean pine forest at low altitudes was higher than that in other communities, but the divergence tendency wasn抰 so obvious as that of arbor species. The dissimilarity derived from binary data of herb and all plant species at different altitudes showed greatly close tendency, and the differences in herb and all plant species between sub-plots were the greatest for the communities of broad-leaved-Korean pine forest and alpine tundra zone..展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy...The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.展开更多
A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures a...A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures are defined to characterize the complexity of the symbolic series. The measures reflect the sensitive dependence of chaotic systems on initial conditions and the randomness of a time series, and thus can distinguish periodic or completely random series from chaotic time series even though the lengths of the time series are not long. Finally, the logistic map and the two-parameter Henon map are studied and the results are satisfactory.展开更多
My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence ...My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence length and sentence complexity.Second, I shall analyse the complexity of the subclauses collected from the two sections and compare the results from these sections, focusing on finite subclauses and non-finite subclauses. I hope to be able to point out some differences in style between the news and sports sections concerning the use of subordinate clauses in various syntactic functions in order to examine how the choice of linguistic structures differs in different sections of The Times.展开更多
Love is an eternal subject with many references in many novels,but Langston Hughes approaches it in a most simplified manner to portray the complex feeling of the protagonists.He achieves this inward complexity throug...Love is an eternal subject with many references in many novels,but Langston Hughes approaches it in a most simplified manner to portray the complex feeling of the protagonists.He achieves this inward complexity through carefully-treated outward simplicity.The paper discusses this art of writing in Early Autumn from such aspects as the dramatic point of view,well-designed setting,careful presentation and effective rhetorical devices.展开更多
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, ...In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.展开更多
We determined the linear complexity of a family of p2-periodic binary threshold sequences and a family of p2-periodic binary sequences constructed using the Legendre symbol,both of which are derived from Fermat quotie...We determined the linear complexity of a family of p2-periodic binary threshold sequences and a family of p2-periodic binary sequences constructed using the Legendre symbol,both of which are derived from Fermat quotients modulo an odd prime p.If 2 is a primitive element modulo p2,the linear complexity equals to p2-p or p2-1,which is very close to the period and it is large enough for cryptographic purpose.展开更多
It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration o...It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.展开更多
Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset...In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.展开更多
Timely detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meanings. We introduce a complexity measure for time series: the base-scale entropy. The definition d...Timely detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meanings. We introduce a complexity measure for time series: the base-scale entropy. The definition directly applies to arbitrary real-word data. We illustrate our method on a practical speech signal and in a theoretical chaotic system. The results show that the simple and easily calculated measure of base-scale entropy can be effectively used to detect qualitative and quantitative dynamical changes.展开更多
In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ...In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ=0 and 0〈μ〈 2N/n(m-1)+2 or γ 〉 0 and 1/p-1 〈 μ 〈 2N/N(m-1)+2 then for any nonnegative function φ in a nonnegative countable subset F of the Schwartz space S(RN), there exists an initial-value u0 ∈ C(RN) with limx→∞ uo(x)= 0 such that φ is an w-limit point of the rescaled solutions tμ/2u(tβ, t), Where β = 2-μ(m-1)/4.展开更多
Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process par...Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process parameters (e.g. energetic transfer to rock mass, hole deviations, misfires, vibrations, fly-rock, etc.). The approach to this problem searching for the "optimum" result can be ineffective. The geological environment is marked out by too many uncertainties, to have an "optimum" suitable to different applications. Researching for "Robustness" in a blast design gives rise to much more efficiency. Robustness is the capability of the system to behave constantly under varying conditions, without leading to unexpected results. Since the geology varies from site to site, setting a robust method can grant better results in varying environments, lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an innovative approach to systems. C.A. allows analyzing the Complexity of the Blast System and the criticality of each variable (drilling, charging and initiation parameters). The lower is the complexity, the more robust is the system, and the lower is the possibility of unexpected results. The paper presents the results obtained thanks to the C.A. approach in an underground gypsum quarry (Italy), exploited by conventional rooms and pillars method by drilling and blasting. The application of C.A. led to a reliable solution to reduce the charge per delay, hence reducing the impact of ground vibration on the surrounding structures. The analysis of the correlation degree between the variables allowed recognizing empirical laws as well.展开更多
In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic ...In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic or stochastic.Their method is based on a comparison of neighbouring values.This paper further develops PE,and proposes the concept of fine-grained PE (FGPE) defined by the order pattern and magnitude of the difference between neighbouring values. This measure excludes the case where vectors with a distinct appearance are mistakenly mapped onto the same permutation type,and consequently FGPE becomes more sensitive to the dynamical change of time series than does PE,according to our simulation and experimental results.展开更多
Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at...Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.展开更多
This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular...This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.展开更多
We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffin...We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffing model are investigated.Moreover,the influence of Gaussian random noise on both the DFA and LZC are analyzed.The results show a high correlation between the DFA and LZC,which can quantify the non-stationarity and the nonlinearity of the time series,respectively.With the enhancement of the random component,the exponent α and the normalized complexity index C show increasing trends.In addition,C is found to be more sensitive to the fluctuation in the nonlinear time series than α.Finally,the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve,and an effective fault diagnosis result is obtained.展开更多
Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air tr...Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.展开更多
文摘Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.
基金supported by the Chinese Academy of Science(grand KZCX2-406)founded by Chinese Science of Academy undred People’Project.
文摘By the method of gradient pattern analysis, twenty plots were set at altitudes of 700-2600 m with an interval of 100 m on the northern slope of the Changbai Mountain. The dissimilarity of respective sub-plots in the same community was measured and the complexity of plant communities at different altitudes was analyzed. The result from binary data of tree species in canopy tree indicated that the sub-plots in the communities, except subalpine Betula ermanii forest, showed comparatively high dissimilarity in species composition. Especially, the dissimilarity index (0.7) of broadleaved/Korean pine forest at low altitudes was obviously higher than other communities. The differences are not obvious between communities referring to dark coniferous forest. Comparatively, the dissimilarity in sub-plots of the communities at altitude of 1400 m was slightly higher than that of other communities, which reflected the complexity of tree species compositions of transitory-type communities. For subalpine Betula ermanii forest, tree species composition was simple and showed a high similarity between sub-plots. The results derived from binary data of shrub showed that the dissimilarity index of shrub species in broadleaved/Korean pine forest at low altitudes was higher than that in other communities, but the divergence tendency wasn抰 so obvious as that of arbor species. The dissimilarity derived from binary data of herb and all plant species at different altitudes showed greatly close tendency, and the differences in herb and all plant species between sub-plots were the greatest for the communities of broad-leaved-Korean pine forest and alpine tundra zone..
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61073187)
文摘The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.
基金supported by the Scientific Research Fund of Zhejiang Provincial Education Department of China (Grant No 20070814)the National Natural Science Foundation of China (Grant No 10871168)
文摘A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures are defined to characterize the complexity of the symbolic series. The measures reflect the sensitive dependence of chaotic systems on initial conditions and the randomness of a time series, and thus can distinguish periodic or completely random series from chaotic time series even though the lengths of the time series are not long. Finally, the logistic map and the two-parameter Henon map are studied and the results are satisfactory.
文摘My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence length and sentence complexity.Second, I shall analyse the complexity of the subclauses collected from the two sections and compare the results from these sections, focusing on finite subclauses and non-finite subclauses. I hope to be able to point out some differences in style between the news and sports sections concerning the use of subordinate clauses in various syntactic functions in order to examine how the choice of linguistic structures differs in different sections of The Times.
文摘Love is an eternal subject with many references in many novels,but Langston Hughes approaches it in a most simplified manner to portray the complex feeling of the protagonists.He achieves this inward complexity through carefully-treated outward simplicity.The paper discusses this art of writing in Early Autumn from such aspects as the dramatic point of view,well-designed setting,careful presentation and effective rhetorical devices.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815) Important National Science & Technology Specific Projects (2017ZX03001028)
文摘In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
基金the National Natural Science Foundation of China,the Open Funds of State Key Laboratory of Information Security (Chinese Academy of Sciences),the Program for New Century Excellent Talents in Fujian Province University
文摘We determined the linear complexity of a family of p2-periodic binary threshold sequences and a family of p2-periodic binary sequences constructed using the Legendre symbol,both of which are derived from Fermat quotients modulo an odd prime p.If 2 is a primitive element modulo p2,the linear complexity equals to p2-p or p2-1,which is very close to the period and it is large enough for cryptographic purpose.
基金supported by the National Natural Science Foundation of China (No. 61573181)the Civil Aviation Joint Fund Key Projects of National Natural Science Foundation of China (No.U1333202)
文摘It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
基金supported by the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory (ITD-U13007/ KX132600014)the National Natural Science Foundation of China (No. 9143810063)the Fundamental Research Funds for the Central Universities (2014RC0202)
文摘In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.
文摘Timely detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meanings. We introduce a complexity measure for time series: the base-scale entropy. The definition directly applies to arbitrary real-word data. We illustrate our method on a practical speech signal and in a theoretical chaotic system. The results show that the simple and easily calculated measure of base-scale entropy can be effectively used to detect qualitative and quantitative dynamical changes.
基金supported by National Natural Science Foundation of Chinasupported by Specialized Research Fund for the Doctoral Program of Higher Educationsupported by Graduate Innovation Fund of Jilin University (20101045)
文摘In this paper we analyze the large time behavior of nonnegative solutions of the Cauchy problem of the porous medium equation with absorption ut - △um + yup = 0,where γ≥0,m〉 1and P〉m+2/N We will show that if γ=0 and 0〈μ〈 2N/n(m-1)+2 or γ 〉 0 and 1/p-1 〈 μ 〈 2N/N(m-1)+2 then for any nonnegative function φ in a nonnegative countable subset F of the Schwartz space S(RN), there exists an initial-value u0 ∈ C(RN) with limx→∞ uo(x)= 0 such that φ is an w-limit point of the rescaled solutions tμ/2u(tβ, t), Where β = 2-μ(m-1)/4.
文摘Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process parameters (e.g. energetic transfer to rock mass, hole deviations, misfires, vibrations, fly-rock, etc.). The approach to this problem searching for the "optimum" result can be ineffective. The geological environment is marked out by too many uncertainties, to have an "optimum" suitable to different applications. Researching for "Robustness" in a blast design gives rise to much more efficiency. Robustness is the capability of the system to behave constantly under varying conditions, without leading to unexpected results. Since the geology varies from site to site, setting a robust method can grant better results in varying environments, lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an innovative approach to systems. C.A. allows analyzing the Complexity of the Blast System and the criticality of each variable (drilling, charging and initiation parameters). The lower is the complexity, the more robust is the system, and the lower is the possibility of unexpected results. The paper presents the results obtained thanks to the C.A. approach in an underground gypsum quarry (Italy), exploited by conventional rooms and pillars method by drilling and blasting. The application of C.A. led to a reliable solution to reduce the charge per delay, hence reducing the impact of ground vibration on the surrounding structures. The analysis of the correlation degree between the variables allowed recognizing empirical laws as well.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2007AA04Z238)the Qingdao Foundation for Development of Science and Technology,China (Grant No 06-2-2-10-JCH)
文摘In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary,deterministic or stochastic.Their method is based on a comparison of neighbouring values.This paper further develops PE,and proposes the concept of fine-grained PE (FGPE) defined by the order pattern and magnitude of the difference between neighbouring values. This measure excludes the case where vectors with a distinct appearance are mistakenly mapped onto the same permutation type,and consequently FGPE becomes more sensitive to the dynamical change of time series than does PE,according to our simulation and experimental results.
基金supported by the key project of the National Natural Science Foundation of China (No. 61431001)Huawei Innovation Research Program, the 5G research program of China Mobile Research Institute (Grant No. [2015] 0615)+2 种基金the open research fund of National Mobile Communications Research Laboratory Southeast University (No.2017D02)Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, and Keysight
文摘Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.
文摘This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51175316)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103108110006)
文摘We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffing model are investigated.Moreover,the influence of Gaussian random noise on both the DFA and LZC are analyzed.The results show a high correlation between the DFA and LZC,which can quantify the non-stationarity and the nonlinearity of the time series,respectively.With the enhancement of the random component,the exponent α and the normalized complexity index C show increasing trends.In addition,C is found to be more sensitive to the fluctuation in the nonlinear time series than α.Finally,the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve,and an effective fault diagnosis result is obtained.
基金This work was supported by the Na⁃tional Natural Science Foundation of China(No.61903187)Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20190732)。
文摘Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.