期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的子类判决分析的SAR目标特征提取与识别 被引量:4
1
作者 胡利平 刘宏伟 吴顺君 《电子与信息学报》 EI CSCD 北大核心 2009年第9期2264-2268,共5页
针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA... 针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA)准则寻找最优的投影矢量,使得投影后不同类别的子类样本之间距离最大而每个子类内部的样本散布最小。用美国运动和静止目标获取与识别(MSTAR)计划录取的SAR地面静止目标数据的实验结果表明,ICDA可获得较好的对真实目标的分类性能和对干扰目标的拒判能力。 展开更多
关键词 合成孔径雷达 自动目标识别 子类判决分析 快速全局k-均值聚类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部