Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st...Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.展开更多
The local charge distributions of different shape graphene sheets are investigated by using the quantum calculations. It is found that the charge distribution on carbon atom is not uniform, strongly depending on its p...The local charge distributions of different shape graphene sheets are investigated by using the quantum calculations. It is found that the charge distribution on carbon atom is not uniform, strongly depending on its position in the graphene and its local atomic environment condition. The symmetrical characteristic and geometrical structures of graphene also have an important influence on the charge distribution. The charges of atom at the graphene edge are strongly related to their surrounding bonds. It is found that the charges of double-bonded atom at the zigzag edge are closely related to the bond angle, but the charges of double-bonded atom at the armchair edge are mainly influenced by the area of triangle. The charges of triple-bonded atom at the edge are mainly affected by the standard deviation of the length of the associated triple bonds.展开更多
Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th...Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.展开更多
In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively....In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.展开更多
The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation(HDN)activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribut...The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation(HDN)activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribution effects on quinoline HDN were studied.The results show that a lack of electrons and extra protons can both lower the orbital eigenvalue of the Ni-Mo-S,leading to stronger adsorption of nitrogen-containing compounds and inhibition of ammonia desorption.Electron deficiency will improve the generation of active hydrogen on the active sites but inhibit hydrogen transfer to the nitrogen compounds;extra protons can provide H^(+)to the nitrogen compounds,which will flexibly transfer between the nitrogen compound and active sites,thus improving the cleavage of the C-N bond.展开更多
For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed disp...For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.展开更多
A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equa...A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equations is established by combining hydrodynamics and plasma chemical reactions.The evolution characteristics of electrons,positive ions,negative ions and neutral particles,as well as the distribution characteristics of space charges are analyzed,and the evolutionary flow of microscopic particles is summarized.The results indicate that the positive end of the bipolar corona initiates discharge before the negative end,but the plasma chemistry at the negative end is more vigorous.The electron generation rate can reach 1240 mol(m^(3) s)^(-1),and the dissipation rate can reach 34 mol(m^(3) s)^(-1).The positive ion swarm is dominated by O_(4)^(+),and the maximum generation rate can reach 440 mol((m^(3) s)^(-1).The negative ion swarm is mainly O_(2) and O_(4).The O_(2) content is approximately 1.5-3 times that of O_(4),and the maximum reaction rate can reach 51 mol(m^(3) s)^(-1).The final destination of neutral particles is an accumulation in the form of O_(3) and NO,and the amount of O3 produced is approximately 4-6 times that of NO.The positive end of the bipolar corona is dominated by positive space charges,which continue to develop and spread outwards in the form of a pulse wave.The negative end exhibits a space charge distribution structure of concentrated positive charges and diffused negative charges.The validity of the microscopic simulation analysis is verified by the macroscopic discharge phenomenon.展开更多
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial dis...The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.展开更多
Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-p...Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO) investigations indicate the p- electron profiles in methane, ethane, propane, and n-butane. By increasing the number of carbon-carbon bonds in lower momentum regions, the s, p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P 〈 0.50 a.u.). Meanwhile, the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds, meaning that more electrons have contributed to orbital construction. The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space. An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space. However, such shifts are greatly reduced in the outer valence space. Meanwhile, the opposite energy shift trend is found in the intermediate valence space.展开更多
Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Usi...Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51708078)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0815)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200542)the Chongqing Innovative Research Group Project(Grant No.CXQT21015)Foundation of Chongqing Normal University(22XLB022).
文摘Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11764027 and 11364025)the Chinese Scholarship Council(Grant No.201408625041)
文摘The local charge distributions of different shape graphene sheets are investigated by using the quantum calculations. It is found that the charge distribution on carbon atom is not uniform, strongly depending on its position in the graphene and its local atomic environment condition. The symmetrical characteristic and geometrical structures of graphene also have an important influence on the charge distribution. The charges of atom at the graphene edge are strongly related to their surrounding bonds. It is found that the charges of double-bonded atom at the zigzag edge are closely related to the bond angle, but the charges of double-bonded atom at the armchair edge are mainly influenced by the area of triangle. The charges of triple-bonded atom at the edge are mainly affected by the standard deviation of the length of the associated triple bonds.
基金supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC)the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001)+1 种基金Key Laboratory of Nuclear Data foundation (JCKY2020201C157)the Anhui Project (Z010118169)
文摘Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.
基金Supported by the Shanghai Key Lab of Modern Optical System
文摘In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.
基金the financial support from the Sinopec Science and Technology Department(Grant No.121014-1)。
文摘The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation(HDN)activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribution effects on quinoline HDN were studied.The results show that a lack of electrons and extra protons can both lower the orbital eigenvalue of the Ni-Mo-S,leading to stronger adsorption of nitrogen-containing compounds and inhibition of ammonia desorption.Electron deficiency will improve the generation of active hydrogen on the active sites but inhibit hydrogen transfer to the nitrogen compounds;extra protons can provide H^(+)to the nitrogen compounds,which will flexibly transfer between the nitrogen compound and active sites,thus improving the cleavage of the C-N bond.
文摘For establishing the equation of the capacitive target detection accurately, the distributing characteristics of the charges on the bomb body with capacitance fuze were explored. Continuous charges were analyzed dispersively. Based on the Coulomb's law, the dynamic equilibrium equations of the inducing charges on the bomb body were set up. For the four cases of d 0/L (the ratio between the electrode distance and the bomb length), the curves of the charge's distribution were given. It was concluded that: ① the charge density decreases steadily from the end near the frontal electrode to the bomb tail; ② the declining rate of the density is governed by d 0/L , the larger the value of d 0/L ,the higher the declining rate, and vice versa.
基金supported by the Aeronautical Science Foundation of China(No.201944057001)the National Key Research and Development Program of China(No.2017YFC1501506).
文摘A floating conductor exhibits a bipolar corona phenomenon with microscopic discharge characteristics that are still unclear.In this study,a plasma simulation model of the bipolar corona with 108 chemical reaction equations is established by combining hydrodynamics and plasma chemical reactions.The evolution characteristics of electrons,positive ions,negative ions and neutral particles,as well as the distribution characteristics of space charges are analyzed,and the evolutionary flow of microscopic particles is summarized.The results indicate that the positive end of the bipolar corona initiates discharge before the negative end,but the plasma chemistry at the negative end is more vigorous.The electron generation rate can reach 1240 mol(m^(3) s)^(-1),and the dissipation rate can reach 34 mol(m^(3) s)^(-1).The positive ion swarm is dominated by O_(4)^(+),and the maximum generation rate can reach 440 mol((m^(3) s)^(-1).The negative ion swarm is mainly O_(2) and O_(4).The O_(2) content is approximately 1.5-3 times that of O_(4),and the maximum reaction rate can reach 51 mol(m^(3) s)^(-1).The final destination of neutral particles is an accumulation in the form of O_(3) and NO,and the amount of O3 produced is approximately 4-6 times that of NO.The positive end of the bipolar corona is dominated by positive space charges,which continue to develop and spread outwards in the form of a pulse wave.The negative end exhibits a space charge distribution structure of concentrated positive charges and diffused negative charges.The validity of the microscopic simulation analysis is verified by the macroscopic discharge phenomenon.
基金Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102)the Foundation of the Education Committee of Chongqing (Grant No. KJ090503)
文摘The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.
基金supported by the National Natural Science Foundation of China (Grant Nos.10974139,11104247,and 11176020)
文摘Orbital responses to methyl sites in CnH2n+2 (n = 1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method. Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space. The highest occupied molecular orbital (HOMO) investigations indicate the p- electron profiles in methane, ethane, propane, and n-butane. By increasing the number of carbon-carbon bonds in lower momentum regions, the s, p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P 〈 0.50 a.u.). Meanwhile, the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds, meaning that more electrons have contributed to orbital construction. The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space. An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space. However, such shifts are greatly reduced in the outer valence space. Meanwhile, the opposite energy shift trend is found in the intermediate valence space.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917124960522)the Program for Promotion of Science at Universities in Guangdong Province of China(Grant No.2018KTSCX062)。
文摘Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.