期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Research progress of catalysts for synthesis of glycerol carbonate form glycerol and urea
1
作者 WANG Yuhua LI Hongguang +3 位作者 DING Liang KOU Yongli QI Wenbo ZHAO Ning 《燃料化学学报(中英文)》 北大核心 2025年第6期964-982,共19页
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform... Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts. 展开更多
关键词 glycerol carbonate GLYCEROL UREA catalysts
在线阅读 下载PDF
Methods for the formation of M-N_(x)-C active sites on single-atom catalysts and their role in persulfate activation by non-radical paths
2
作者 SI Wen-hao SI Jin-xuan +4 位作者 WANG Kang-jun QI Fei CHEN Jia-bin ZENG Ze-quan HUANG Zhang-gen 《新型炭材料(中英文)》 北大核心 2025年第5期993-1015,共23页
In recent years,numer-ous single-atom catalysts(SACs)have been synthesized to activate persulfate(PS)by a non-radical pathway because of its high se-lectivity,and activity for the cata-lyst.Metal-nitrogen-carbon(M-N_(... In recent years,numer-ous single-atom catalysts(SACs)have been synthesized to activate persulfate(PS)by a non-radical pathway because of its high se-lectivity,and activity for the cata-lyst.Metal-nitrogen-carbon(M-N_(x)-C)has been identified as the key active site in SACs.Although methods for preparing SACs have been extensively reported,a systematic summary of the direct construction of M-N_(x)-C,espe-cially unconventional metal-nitrogen-carbon(UM-N_(x)-C,x≠4),on SACs for PS non-radical activation has still not been reported.The role of the M-N_(x)-C active sites on PS non-radical activation is discussed and methods for the formation of M-N_(x)-C and UM-N_(x)-C active sites in SACs and the effect of catalyst carriers such as carbon nitride(g-C_(3)N_(4)),MOFs,COFs,and other car-bon materials are reviewed.Direct and indirect methods,especially for UM-N_(x)-C active site formation,are also elaborated.Factors affecting the formation of a M-N_(x)-C active site on SACs are also discussed.Prospects for the use of M-N_(x)-C active sites for the non-radical activation of PS by SACs to remove organic contaminants from wastewater are evaluated. 展开更多
关键词 Single-atom catalysts PERSULFATE Non-radical pathway Unconventional metal-nitrogen-carbon active site Organic contaminants
在线阅读 下载PDF
Roles of Sn-promoter and carbon nanotubes treatment on supported CoB catalysts for hydrogen production
3
作者 SHI Limin LI Yanbo +2 位作者 LEI Qiang REN Rongzhi WANG Yujing 《燃料化学学报(中英文)》 北大核心 2025年第5期703-712,共10页
Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discu... Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability. 展开更多
关键词 sodium borohydride hydrolysis CoB-based catalysts Sn promoter carbon nanotubes oxidation treatment
在线阅读 下载PDF
Corrigendum to“Mechanistic Insights into Water-Mediated CO_(2)Electrochemical Reduction Reactions on Cu@C_(2)N Catalysts:A Theoretical Study”[Acta Physico-Chimica Sinica(2024)40,2303040]
4
《物理化学学报》 北大核心 2025年第5期144-144,共1页
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers... Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China. 展开更多
关键词 chemical engineeringdalian theoretical study water mediated Cu C N catalysts fine chemicalsschool CO electrochemical reduction chemical engineeringstate
在线阅读 下载PDF
Strong electronic metal-support interactions for enhanced hydroformylation activity and stability over Rh single-atom catalysts through phosphorus doping
5
作者 Boyang Fu Ping Ma +11 位作者 Xiaoyang Ding Kaifu Cai Limin Sun Yujin Zhu Qiwei Yin Yihao Sun Tianle Liu Yuzhen Li Yuxing Xu Jian Gu Haowen Ma Junling Lu 《中国科学技术大学学报》 北大核心 2025年第3期2-10,1,I0001,共11页
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d... By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability. 展开更多
关键词 heterogeneous hydroformylation Rh single-atom catalysts electronic metal-support interactions phosphorus doping
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
6
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
7
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells:Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway
8
作者 Kai-Chi Qin Meng-Tian Huo +3 位作者 Yu Liang Si-Yuan Zhu Zi-Hao Xing Jin-Fa Chang 《电化学(中英文)》 北大核心 2025年第8期1-22,共22页
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit... Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization. 展开更多
关键词 Direct ethanol fuel cells Ethanol electrooxidation C-C bond cleavage ELECTROCATALYSIS Anode catalyst
在线阅读 下载PDF
Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping
9
作者 Chang Lan Jing-Sen Bai +8 位作者 Xin Guan Shuo Wang Nan-Shu Zhang Yu-Qing Cheng Jin-Jing Tao Yu-Yi Chu Mei-Ling Xiao Chang-Peng Liu Wei Xing 《电化学(中英文)》 北大核心 2025年第9期56-68,共13页
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor... The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications. 展开更多
关键词 Oxygen reduction reaction Proton exchange membrane fuel cell Single-atom catalyst Co-N-C Boron doping
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
10
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
Designing catalysts to formic acid oxidation reaction:From nanoscale to single atoms
11
作者 GONG Jia-xin HU Shou-yao XIONG Yu 《Journal of Central South University》 CSCD 2024年第12期4586-4600,共15页
Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the... Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future. 展开更多
关键词 formic acid oxidation reaction nanosized catalysts single atom catalysts synthetic strategy
在线阅读 下载PDF
Carbon dioxide reforming of methane over bimetallic catalysts of Pt-Ru/γ-Al_2O_3 for thermochemical energy storage 被引量:3
12
作者 杜娟 杨晓西 +4 位作者 丁静 魏小兰 杨建平 王维龙 杨敏林 《Journal of Central South University》 SCIE EI CAS 2013年第5期1307-1313,共7页
The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by... The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications. 展开更多
关键词 carbon dioxide reforming of methane Pt-Ru/7-A1203 catalysts long-term stability thermochemical energy storage
在线阅读 下载PDF
Distribution and State of Ni Contaminants on Resid Fluid Catalytic Cracking Catalysts—Characterization by AEM, EPMA, UV-Vis and TPR 被引量:1
13
作者 Xue Yongfang (Research Institute of Petroleum Processing, Beijing 100083) 《石油学报(石油加工)》 EI CAS CSCD 北大核心 1997年第S1期148-153,共6页
DistributionandStateofNiContaminantsonResidFluidCatalyticCrackingCatalysts—CharacterizationbyAEM,EPMA,UVVisa... DistributionandStateofNiContaminantsonResidFluidCatalyticCrackingCatalysts—CharacterizationbyAEM,EPMA,UVVisandTPRXueYongfang... 展开更多
关键词 DISTRIBUTION STATE Ni contaminant equilibrium catalysts resid FLUID CATALYTIC CRACKING process
在线阅读 下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
14
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants Heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
在线阅读 下载PDF
Pt-Ru Catalysts Prepared by a Modified Polyol Process for Direct Methanol Fuel Cells 被引量:1
15
作者 ZHANG Junmin ZHU Fangfang +2 位作者 ZHANG Kunhua LIU Weiping GUAN Weiming 《贵金属》 CAS CSCD 北大核心 2012年第A01期222-226,共5页
Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ... Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation. 展开更多
关键词 PtRu/C catalysts modified polyol method direct methanol fuel cells(DMFCs) electrochemical performance
在线阅读 下载PDF
SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL 被引量:1
16
作者 XIA Guo-fu HU Lin-jie +2 位作者 NIE Hong SHI Ya-hua LI Da-dong 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2001年第1期25-29,共5页
Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta... Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts. 展开更多
关键词 aromatic hydrogenation sulfur resistance noble metal catalysts
在线阅读 下载PDF
The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods
17
作者 Doaa S.EL-DESOUKI Amina H.IBRAHIM +2 位作者 Samira M.ABDELAZIM Noha A.K.ABOUL-GHEIT Dalia R.ABDEL-HAFIZAR 《燃料化学学报》 EI CAS CSCD 北大核心 2021年第1期63-71,共9页
Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,... Sulfated zirconia(SZ)and two promoted 1% Mn/SZ catalysts which have been prepared via sol gel(Mn/SZ-S)and impregnation(Mn/SZ-I)methods were studied.The morphology of the catalysts was characterized by XRD,BET,NH3-TPD,ICP,SEM and FT-IR analysis.The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300℃.The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity.The optimum condition of Mn/SZ-S catalyst was investigated at 200℃ and LHSV of 0.02 h^−1 in a time range from 30 to 210 min.It was found that the total conversion decreased from 80.18% to 53.26% at 210 min.The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h.The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials. 展开更多
关键词 catalysts DEHYDRATION DME sulfate content sulfated zirconia
在线阅读 下载PDF
Cu-based heterojunction catalysts for electrocatalytic nitrate reduction to ammonia
18
作者 HUANG Yitao GUAN Minghao +4 位作者 PEI Jiyuan SONG Yongyi WU Tao HOU Shuandi LU Anhui 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1857-1864,I0008-I0010,共11页
Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they ... Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they still face challenges pertaining of poor stability and low activity,which hinder their further application.Herein,we present a Cu_(2)O/Cu heterojunction catalyst supported on nitrogen-doped porous carbon for nitrate reduction.High resolution transmission electron microscopy(HRTEM)and X-ray Diffraction(XRD)results confirm the presence of Cu_(2)O/Cu heterojunctions,which serve as an active phase in catalysis.The nitrogen-doped porous carbon as a carrier not only enhances the catalyst’s stability,but also facilitates the exposure and dispersion of active sites.At-1.29 V(vs.RHE),the maximum production rate of ammonia reaches 8.8 mg/(mg·h)with a Faradaic efficiency of 92.8%.This study also elucidates the effect of Cu_(2)O-to-Cu ratio in the heterojunction on catalytic performance,thereby providing valuable insights for designing efficient nitrate reduction catalysts for ammonia production. 展开更多
关键词 ELECTROCATALYSIS nitrate reduction AMMONIA copper-based catalysts
在线阅读 下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
19
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 Carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
在线阅读 下载PDF
STUDY ON THE MECHANICAL PROPERTIES OF SOLID CATALYSTS
20
作者 Wu Dongfang, Li Yongdan and Chang Liu (Department of Catalysis Science and Technology School of Chemical Engineering, Tianjin University Tianjin 300072) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期291-294,共4页
The mechanics of porous catalyst paricles has been discussed and outlined. Concept of brittle fracture, statistical model of single-particle strength, and bulk crushing strength model were introduced. It is elucidated... The mechanics of porous catalyst paricles has been discussed and outlined. Concept of brittle fracture, statistical model of single-particle strength, and bulk crushing strength model were introduced. It is elucidated that the objective of catalyst mechanics research is to establish mechanical reliability model of converters using solid catalysts. 展开更多
关键词 solid catalysts mechanical strength Weibull Statistics mechanical reliability model
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部