Molecular dynamics simulations of the displacement cascades in Fe 10%Cr systems are used to sinmlate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knocke...Molecular dynamics simulations of the displacement cascades in Fe 10%Cr systems are used to sinmlate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knockedon atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe Cr or Fe Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of lee interstitials with a few Cr atoms, the rest are lee Cr clusters with small and medium sizes. The interstitial dumbbells of Fe lee and Fe-Cr are in the (111)and (110) series directions, respectively.展开更多
In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by sim...In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.展开更多
This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating som...This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studi...In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studied,the collision behavior mode of particles was determined,the spatial saltation law of particles was investigated,the spatial functional axis of beds was determined,and the saltation separation period of particles was determined.The test results show that:When separation bed provides inlet airflow velocity(U_(in)) is 2.55 m/s,the airflow distribution interval of I,II and III areas were U_(I)=2.55-2.57 m/s,U_(II)=1.33-1.35 m/s,U_(III)=0.35-0.38 m/s,respectively;when separation bed vibration amplitude (A)A=2.4-2.5 mm,separation bed vibration frequency (f) f=23-24 Hz,the desulfurization effect is the best.When vibration intensity (Γ)Γ=1.22,U_(in)=1.05 m/s,the particles have disordered contact and collision behavior.WhenΓ=14.89,U_(in)=3.18 m/s,the particles have a transition cataclastic collision.WhenΓ=5.80,U_(in)=2.55 m/s,the particles have directional collision behavior.It is determined that the OX axis is the transverse stable diffusion axis of the material,the OY axis is the longitudinal gradient transport axis of the material,and the OZ axis is the vertical density cascade distribution axis of the material.When separation time (T) T=0-10 s was the period of disorderly diffusion and mixing of particles,T=10-20 s was the period of directional migration and stratification of particles,and T=20-30 s was the period of cascade distribution and separation of particles.Finally,separation experiments conducted under optimal operating parameters demonstrated that the clean coal yield was 72.02%with a sulfur content of 0.98%.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB209803)the Applied Basic Research Program of Hebei Province,China (Grant No. 10165401P)
文摘Molecular dynamics simulations of the displacement cascades in Fe 10%Cr systems are used to sinmlate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knockedon atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe Cr or Fe Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of lee interstitials with a few Cr atoms, the rest are lee Cr clusters with small and medium sizes. The interstitial dumbbells of Fe lee and Fe-Cr are in the (111)and (110) series directions, respectively.
基金supported by National Basic Research Program of China (Grant No 2006CB705500)Changjiang Scholars and Innovative Research Team in University (Grant No IRT0605)the National Natural Science Foundation of China (Grant No 70631001)
文摘In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.
基金supported by National Basic Research Program of China (Grant No 2006CB705500)Chang-Jiang Scholars and Innovative Research Team in University of China (Grant No IRT0605)the National Natural Science Foundation of China (Grant No70631001)
文摘This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
基金supported by Science and Technology Project of Hebei Education Department (No. ZD2022128)Tangshan Science and Technology Plan Project (No. 22130226H)。
文摘In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studied,the collision behavior mode of particles was determined,the spatial saltation law of particles was investigated,the spatial functional axis of beds was determined,and the saltation separation period of particles was determined.The test results show that:When separation bed provides inlet airflow velocity(U_(in)) is 2.55 m/s,the airflow distribution interval of I,II and III areas were U_(I)=2.55-2.57 m/s,U_(II)=1.33-1.35 m/s,U_(III)=0.35-0.38 m/s,respectively;when separation bed vibration amplitude (A)A=2.4-2.5 mm,separation bed vibration frequency (f) f=23-24 Hz,the desulfurization effect is the best.When vibration intensity (Γ)Γ=1.22,U_(in)=1.05 m/s,the particles have disordered contact and collision behavior.WhenΓ=14.89,U_(in)=3.18 m/s,the particles have a transition cataclastic collision.WhenΓ=5.80,U_(in)=2.55 m/s,the particles have directional collision behavior.It is determined that the OX axis is the transverse stable diffusion axis of the material,the OY axis is the longitudinal gradient transport axis of the material,and the OZ axis is the vertical density cascade distribution axis of the material.When separation time (T) T=0-10 s was the period of disorderly diffusion and mixing of particles,T=10-20 s was the period of directional migration and stratification of particles,and T=20-30 s was the period of cascade distribution and separation of particles.Finally,separation experiments conducted under optimal operating parameters demonstrated that the clean coal yield was 72.02%with a sulfur content of 0.98%.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.