期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Separation of silicon and iron in copper slag by carbothermic reduction-alkaline leaching process 被引量:13
1
作者 WANG Hong-yang SONG Shao-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2249-2258,共10页
Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS ut... Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS utilizes a valuable metal and alleviates the environmental stress caused by stockpile. In this paper, a new method has been developed to realize the enrichment of iron in CS through the selective removal of silica. The thermodynamic analyses and experimental results show that the iron in CS can be fully reduced into metallic iron by carbothermic reduction at 1473 K for 60 min. The silica was converted into free quartz solid solution(QSS) and cristobalite solid solution(CSS). QSS and CSS are readily soluble, whereas metallic iron is insoluble, in NaOH solution. Under optimal leaching conditions, a residue containing 87.32% iron is obtained by decreasing the silica content to 6.02% in the reduction roasted product. The zinc content in the residue is less than 0.05%. This study lays the foundation for the development of a new method to comprehensively extract silicon and iron in CS while avoiding the generation of secondary tailing. 展开更多
关键词 copper slag quartz solid solution cristobalite solid solution carbothermic reduction alkaline leaching
在线阅读 下载PDF
Carbothermic reduction of alumina with carbon in vacuum 被引量:4
2
作者 郁青春 袁海滨 +4 位作者 朱富龙 张晗 王辰 刘大春 杨斌 《Journal of Central South University》 SCIE EI CAS 2012年第7期1813-1816,共4页
Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction te... Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature. 展开更多
关键词 ALUMINA carbothermic reduction VACUUM ALUMINUM
在线阅读 下载PDF
Low-cost synthesis of high-purity Li_(2)S for sulfide solid state electrolytes enabled by polyvinyl alcohol 被引量:3
3
作者 WU Zhuang-zhi HAN Cheng +3 位作者 WANG Jia-sen LI Xue-bao FEI Hao WANG De-zhi 《Journal of Central South University》 CSCD 2024年第12期4449-4459,共11页
Sulfide solid electrolytes(S-SEs)are widely preferred for their high ionic conductivity and processability.However,the further development of S-SEs is hindered by the excessive price of its critical raw materials of L... Sulfide solid electrolytes(S-SEs)are widely preferred for their high ionic conductivity and processability.However,the further development of S-SEs is hindered by the excessive price of its critical raw materials of Li_(2)S.Herein,a low-cost and environmentally friendly method is proposed to synthesize Li_(2)S by the carbothermal reduction reaction of Li_(2)SO_(4)in one step,and the effects of various factors are also discussed.As a result,a purity of 99.67%is obtained over the self-prepared Li_(2)S.More importantly,the cost of the self-prepared Li_(2)S is only about 50$/kg,which is significantly lower than that of the commercial counterpart(10000−15000 dollar/kg).Moreover,the ionic conductivity of Li_(5.5)PS_(4.5)Cl_(1.5)prepared using self-prepared Li_(2)S as raw materials is 4.19 mS/cm at room temperature,which is a little higher than that of Li_(5.5)PS_(4.5)Cl_(1.5)using commercial Li_(2)S(4.05 mS/cm).And the all-solid-state lithium batteries(ASSLBs)with the as-prepared electrolytes could maintain a discharge capacity of 109.9 mA·h/g with an average coulombic efficiency(CE)of 98%after 100 cycles at 0.2 C,which is equivalent to that using commercial Li_(2)S,demonstrating that the preparation strategy of Li_(2)S proposed in this work is feasible. 展开更多
关键词 lithium sulfide one-step preparation sulfide solid-state electrolytes all-solid-state lithium battery carbothermal reduction low-cost preparation
在线阅读 下载PDF
Calculation of interaction of AlCl, AlCl_2 and AlCl_3 on Al_4C_3(001) Al_4CO_4(001) and Al_2CO(001) planes
4
作者 段少飞 陈秀敏 +3 位作者 杨斌 郁青春 徐宝强 刘大春 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期43-58,共16页
To make sure the intermediate products of the carbothermic reduction of Al2O3 process, such as Al4CO4, Al2CO and Al4C3,and the interaction of AlCl, AlCl2, AlCl3 with Al4CO4, Al2CO and Al4C3, respectively, thermodynami... To make sure the intermediate products of the carbothermic reduction of Al2O3 process, such as Al4CO4, Al2CO and Al4C3,and the interaction of AlCl, AlCl2, AlCl3 with Al4CO4, Al2CO and Al4C3, respectively, thermodynamic analyses were used to study the chloride reaction production of them under the vacuum situation. The stable structures and electronic properties of AlCl, AlCl2 and AlCl3 adsorbed on Al4CO4, Al2CO and Al4C3 were calculated by first-principles calculations by the CASTEP module in the Materials Studio program. The results show that the AlCl3 and AlCl2 molecules have decomposed on the plane of Al4C3(001), while there are no obvious decomposition of AlCl3 and AlCl2 on Al4CO4(001) and Al2CO(001) planes. The adsorption of AlCl on the Al4CO4(001)and Al2CO(001) planes is stronger than that on the Al4C3(001) plane. The interaction strength of AlCl3, as well as AlCl2, with Al4CO4,Al2CO and Al4C3 is in the sequence of Al4CO4Al2CO〉Al4C3. 展开更多
关键词 Ab initio chloride reaction carbothermic reduction Al4C3 Al4CO4 Al2CO
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部