The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent sy...High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.展开更多
生物质和化石燃料经不完全燃烧产生的固相富碳残留物统称为黑炭.溶解性炭黑(dissolved black carbon,DBC)是黑炭的水溶性组分(其粒径尺度小于0.45μm),被视为全球溶解有机碳库的重要组成部分.尽管针对它的结构与功能、行为与归宿已有研...生物质和化石燃料经不完全燃烧产生的固相富碳残留物统称为黑炭.溶解性炭黑(dissolved black carbon,DBC)是黑炭的水溶性组分(其粒径尺度小于0.45μm),被视为全球溶解有机碳库的重要组成部分.尽管针对它的结构与功能、行为与归宿已有研究,但DBC在环境中的产生、迁移、转化等过程对有机污染物环境行为的影响关注仍显不足.因此,综述了DBC的分布特征,从元素组成、碳质结构、基团性质和技术检测上深度认识DBC的分子结构与性质变化;归纳了DBC与环境新污染物的相互作用,梳理了DBC与新污染物的作用机制和转化效果;概述了DBC的环境过程对有机污染物行为的影响(如结合、去除、转化等).着重就DBC通过氢键、π-π电子供受体、疏水分配、静电作用等与有机污染物发生结合过程、在阳离子条件下DBC通过压缩双电层机制发生团聚并吸附去除污染物过程、以及DBC介导有机污染物光降解过程进行了系统地阐述.未来研究重点应结合跨学科的技术手段认识DBC分子结构的复杂性,深入理解DBC在环境过程中对新污染物行为的影响机制.这为准确评估DBC环境行为与效应,有效构建DBC与新污染物的命运关系起到重要作用.展开更多
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金Project(51204211) supported by the National Natural Science Foundation of ChinaProject(2012M521543) supported by the China Postdoctoral Science Foundation
文摘High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.
文摘生物质和化石燃料经不完全燃烧产生的固相富碳残留物统称为黑炭.溶解性炭黑(dissolved black carbon,DBC)是黑炭的水溶性组分(其粒径尺度小于0.45μm),被视为全球溶解有机碳库的重要组成部分.尽管针对它的结构与功能、行为与归宿已有研究,但DBC在环境中的产生、迁移、转化等过程对有机污染物环境行为的影响关注仍显不足.因此,综述了DBC的分布特征,从元素组成、碳质结构、基团性质和技术检测上深度认识DBC的分子结构与性质变化;归纳了DBC与环境新污染物的相互作用,梳理了DBC与新污染物的作用机制和转化效果;概述了DBC的环境过程对有机污染物行为的影响(如结合、去除、转化等).着重就DBC通过氢键、π-π电子供受体、疏水分配、静电作用等与有机污染物发生结合过程、在阳离子条件下DBC通过压缩双电层机制发生团聚并吸附去除污染物过程、以及DBC介导有机污染物光降解过程进行了系统地阐述.未来研究重点应结合跨学科的技术手段认识DBC分子结构的复杂性,深入理解DBC在环境过程中对新污染物行为的影响机制.这为准确评估DBC环境行为与效应,有效构建DBC与新污染物的命运关系起到重要作用.