The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
The shale of the Cambrian Qiongzhusi Formation in the Sichuan Basin is characterized by large burial depth and high maturity,but the shale gas enrichment pattern is still unclear.Based on the detailed characterization...The shale of the Cambrian Qiongzhusi Formation in the Sichuan Basin is characterized by large burial depth and high maturity,but the shale gas enrichment pattern is still unclear.Based on the detailed characterization of Deyang-Anyue aulacogen,analysis of its depositional environments,together with reconstruction of shale gas generation and enrichment evolution against the background of the Leshan-Longnüsi paleouplift,the aulacogen-uplift enrichment pattern was elucidated.It is revealed that the Deyang-Anyue aulacogen controls the depositional environment of the Qiongzhusi Formation,where high-quality sedimentary facies and thick strata are observed.Meanwhile,the Leshan-Longnüsi paleouplift controls the maturity evolution of the shale in the Qiongzhusi Formation,with the uplift located in a high position and exhibiting a moderate degree of thermal evolution and a high resistivity.The aulacogen-uplift overlap area is conducive to the enrichment of shale gas during the deposition,oil generation,gas generation,and oil-gas adjustment stage,which also has a joint control on the development of reservoirs,resulting in multiple reservoirs of high quality and large thickness.Based on the aulacogen-uplift enrichment pattern and combination,four types of shale gas play are identified,and the sweet spot evaluation criteria for the Qiongzhusi Formation is established.Accordingly,a sweet spot area of 8200 km^(2)in the aulacogen is determined,successfully guiding the deployment of Well Zi 201 with a high-yield industrial gas flow of 73.88×10^(4) m^(3)/d.The new geological insights on the aulacogen-uplift enrichment pattern provide a significant theoretical basis for the exploration and breakthrough of deep to ultra-deep Cambrian shale gas,highlighting the promising exploration prospect in this domain.展开更多
Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue...Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation.展开更多
Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, ...Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, Longbizui and Yanbei areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the content of Mobio(biogenic molybdenum), Babio(biogenic barium) and phosphorus, is positively correlated with TOC. The main alkanes in studied samples are nCC, and odd–even priority values are closed to 1(0.73–1.13), which suggest the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to explain the relationship between data and the factors affecting organic accumulation:(1) quartz-rich and clay-mineral-poor deep shelf–slope–basin environment was favorable for living organisms;(2) high productivity provided the material foundation for organic generation;(3) the redox conditions impact slightly on the content of organic matter under high productivity and dysoxic–anoxic condition.展开更多
Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin fil...Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin filling process and paleo-geography of north Tarim Basin in Early Cambrian,aiming to analyze the factors controlling the distribution and spatial architecture of the subsalt reservoir and source units and to define the favorable exploration direction.The Late Sinian tectonic activities in the northern Tarim Basin were characterized by different patterns in different areas,which controlled the sedimentary pattern in the Early Cambrian.The boundary faults of Nanhuaian rift basin in the south slope of Tabei uplift and the north slope of Tazhong uplift became reactivated in the Early Cambrian,forming two NEE and EW striking subsidence centers and depocenters,where the predicted thickness of the Yurtusi Formation could reach 250 meters.In the Xiaoerbulake period,the weak rimmed platform was developed in the hanging wall of syndepositional fault.Whereas the Nanhuaian rift system in the Tadong and Manxi areas were uplifted and destroyed in the Late Sinian,and appeared as gently slope transiting toward the subsidence center in the Early Cambrian.The former had the sedimentary features of hybrid facies platform and the latter had the sedimentary features of ramp platform.The black shale of the Yurtus Formation in the footwall of syndepositional fault and the reef bank of Xiaoerbulake Formation platform margin in the hanging wall in Early Cambrian constitute a predicable source-reservoir combination.The activity intensity of syndepositional fault controlled the thickness of black shale and the scale of the reef bank.It is suggested carrying out high accuracy seismic exploration to determine the location of Early Cambrian syndepositional faults,on this basis,to search the reef bank of Xiaoerbulake Formation along the faults westward,and then drill risk exploration wells at sites where traps are shallow in buried depth.展开更多
The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major...The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.展开更多
Comprehensively utilizing the seismic,logging,drilling and outcrop data,this research studies the characteristics of the Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin.The res...Comprehensively utilizing the seismic,logging,drilling and outcrop data,this research studies the characteristics of the Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin.The results show that:(1)Three groups of faults striking North-East(NE),near East-West(EW),and North-West(NW)were developed in the Cambrian.The NE and near EW faults,dominated by the normal faults,are the synsedimentary faults and the main faults of the Cambrian.(2)According to the roles of faults in tectonic units and the development scale of the faults,the Cambrian faults can be divided into three grades.The second-grade faults,large in scale,controlled the boundary of the Cambrian sags of the Ordos Basin.The third-grade faults,smaller in scale than the second-grade fault,controlled the high and low fluctuations of local structures.The fourth-grade faults,very small in scale,were adjusting faults developed inside the local tectonic units.(3)The Cambrian faults had strong control on the sedimentation and reservoir of the Cambrian.Controlled by the second-grade and the third-grade faults,the paleogeographical framework of the Cambrian presents combination characteristics of the bulge-sag macro-structures and the high-low differentiation micro-geomorphology.This paleogeographical pattern not only controlled the development of the oolitic beach facies in the Cambrian but also the distribution of high-quality reservoirs.(4)Under the control of the faults,the micro-paleogeomorphological high parts closely adjacent to the margin of the Cambrian sags are the favorable exploration areas.展开更多
Based on drilling data of JT1 and CS1,outcrop profiles and seismic data,the sedimentary pattern,space configuration of source-reservoir-cap combinations and paleouplift evolution characteristics of the Cambrian Lower ...Based on drilling data of JT1 and CS1,outcrop profiles and seismic data,the sedimentary pattern,space configuration of source-reservoir-cap combinations and paleouplift evolution characteristics of the Cambrian Lower Canglangpu Member in the central Sichuan paleouplift have been investigated to determine the favorable exploration zones.Controlled by Deyang-Anyue rift,the Lower Canglangpu Member features differential characteristics from east to west in sedimentary framework.In the west side of the Deyang-Anyue rift,this member is composed of clastic sediments,while in the east side of the Deyang-Anyue rift,it is fresh water shelf sediments,with grain beaches occurring along edges of the depressions,shelf and lagoon.Among the beaches,the dolomitic ones are mainly distributed around the depression edge and in the north of the lagoon.The beach sediments could become high quality reservoirs under the effect of karstification.Underlying the Lower Canglangpu Member is the widespread source rock of the Qiongzhusi Formation,so oil and gas generated by the Qiongzhusi Formation source rock can directly charge into the beach reservoirs.The sandy mudstone of the Upper Canglangpu Member can serve as the caprock of the Lower Canglangpu Member reservoir.The dolomitic beaches are located at the higher part of the paleo-uplift during the main accumulation period,with good hydrocarbon accumulation elements.Blocks PT1-CS1,HT1-GT2 and east GT2 are favorable exploration zones.展开更多
Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the ...Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.展开更多
The study on Lower Cambrian dolostones in Tarim Basin can improve our understanding of ancient and deeply buried carbonate reservoirs.In this research,diagenetic fluid characteristics and their control on porosity evo...The study on Lower Cambrian dolostones in Tarim Basin can improve our understanding of ancient and deeply buried carbonate reservoirs.In this research,diagenetic fluid characteristics and their control on porosity evolution have been revealed by studying the petrography and in situ geochemistry of different dolomites.Three types of diagenetic fluids were identified:(1) Replacive dolomites were deviated from shallow burial dolomitizing fluids,which might probably be concentrated ancient seawater at early stage.(2) Fine-to-medium crystalline,planar-e diamond pore-filling dolomites(Fd1) were likely slowly and sufficiently crystallized from deep-circulating crustal hydrothermal fluids during Devonian.(3) Coarse crystalline,non-planar-a saddle pore-filling dolomites(Fd2) might rapidly and insufficiently crystallize from magmatic hydrothermal fluids during Permian.Early dolomitizing fluids did not increase the porosity,but transformed the primary pores to dissolution pores through dolomitization.Deep-circulating crustal hydrothermal fluids significantly increased porosity in the early stages by dissolving and then slightly decreased the porosity in the late stage due to Fd1 precipitation.Magmatic hydrothermal fluids only precipitated the Fd2 dolomites and slightly decreased the porosity.In summary,Devonian deep-circulating crustal hydrothermal fluids dominated the porosity evolution of the Lower Cambrian dolostone reservoir in the Tarim Basin.展开更多
Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution i...Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution in the Tarim Basin. The results showed that mineral composition and reservoir space type control selective dissolution. In the carbonate rock strata with high calcite content, the calcite is likely to dissolve first to form secondary dissolution pores; gypsum and anhydrite in the carbonate rock can be dissolved to form mold pores in contemporaneous and penecontemporaneous stages. Porous carbonate has mainly enlargement of matrix pores, with porosity and permeability increasing correspondingly, but not obviously. In comparison, dominant channels for fluid are likely to occur in fractured carbonate or porous carbonate forming cracks under high pressure, resulting in a relative reduction in the dissolution volume, but great increase of permeability. With the rise of temperature and pressure, corrosion ability of acid fluid to carbonate rock increases first and then decreases, there exists an optimum range of temperature and pressure for dissolution, which corresponds to the buried depth of 2 250-3 750 m of the Cambrian. Considering reservoir characteristics of the study area, it is concluded that calcite in the penecontemporaneous period is the material basis for the development of dissolution pore, and carbonate rock were mainly dissolved by early atmospheric fresh water, superimposed and reformed to form high quality reservoirs by multiple acid fluids including deep hydrothermal fluid and acid fluid generated during the process of organic thermal evolution under burial condition.展开更多
Based on the latest drilling cores,thin sections,and 3D seismic data,types,features,and evolution processes of Cambrian-Ordovician carbonate platforms in the Gucheng and Xiaotang areas are studied,and favorable explor...Based on the latest drilling cores,thin sections,and 3D seismic data,types,features,and evolution processes of Cambrian-Ordovician carbonate platforms in the Gucheng and Xiaotang areas are studied,and favorable exploration zones in this area are also discussed.There are two types of carbonate platforms developed in the Cambrian-Ordovician in the Gucheng-Xiaotang area,namely,carbonate ramp and rimmed platforms,and the evolution process of the platform in the Gucheng area is different from that in Xiaotang area.In the Early Cambrian,the study area was a homoclinal carbonate ramp.During the Middle to Late Cambrian,it evolved into a rimmed platform,with 5 phases of mound shoals developed.In the southern area,mound shoals were in progradational arrangement and the third and fourth stages of mound shoals suffering exposure and further developed abundant karst vugs.In the northern area,the mound shoals appeared in a superposition of aggradation-weak progradation,the third,fourth,and fifth stages of mound shoals suffered exposure and dissolution,and the platform slope developed gravity flow deposits.In the Early to Middle Ordovician,the southern area gradually evolved into a distally steepened carbonate ramp,where retrogradational dolomitic shoal developed;while the northern part experienced an evolution process from a weakly rimmed platform to a distally steepened carbonate ramp,and developed two or three stages of retrogradational mound shoals.The high-frequency oscillation of sea level and local exposure and dissolution were beneficial to the formation of mound or shoal reservoirs in platform margin and ramp,and the configuration of these reservoirs with low energy slope-basin facies source rocks could form good oil-gas enrichment zones.The dolomitic shoal in the Ordovician platform ramp is the practical exploration field for increasing reserve and production in the Gucheng area.The mound shoal at the Cambrian rimmed platform margin is the key exploration object in the Xiaotang area.In addition,the Cambrian slope gravity flow deposits can be taken as the favorable exploration fields in the study area.展开更多
The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature t...The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.展开更多
Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origi...Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.展开更多
By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reser...By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective.展开更多
Based on isotopic, lithologic and electrical data and logging cycle analysis technique, stratigraphic sequences in the Middle-Upper Cambrian Xixiangchi Group in the Sichuan Basin and its adjacent area are divided, and...Based on isotopic, lithologic and electrical data and logging cycle analysis technique, stratigraphic sequences in the Middle-Upper Cambrian Xixiangchi Group in the Sichuan Basin and its adjacent area are divided, and its sedimentary characteristics and evolution are analyzed. The Xixiangchi Group can be divided into 5 third-order sequences(Sql-Sq5), of which sequences Ⅰ to Ⅲ(Sql-Sq3) are relatively complete, sequences Ⅳ and Ⅴ are denuded in the Late Cambrian because of the Dian-Chuan paleo-uplifts.Third-order sequences of the Xixiangchi Group in this area have the characteristics of thin in the west and thick in the east, showing that the Caledonian paleo-uplift is a synsedimentary paleo-uplift and the paleogeomorphology in the platform is a gentle slope. Sequence Ⅰdevelops high stand systems tract and transgressive systems tract. The other third-order sequences are dominated by highstand systems tracts, and the transgressive systems tracts last shortly in time and are limited in area. The basic features of evaporative-restricted platform of gentle slope type developed continuously in the sedimentary period of the Xixiangchi Group, its sedimentary environment of "high in west and low in east" and the change of micro paleogeomorphology in the platform control the continuous development of sedimentary facies. Open platform is developed only in sequence Ⅰ and sequence Ⅱ, and the inner beach of the platform and the edge beach of the platform are mostly developed in sequence Ⅱ and sequence Ⅲ. It indicates that there are two platform margin zones in the study area,a relatively stable, large-scale platform marginal zone in NE Guizhou-Western Hunan and Hubei, and a moving and small-scale platform marginal zone in North Chongqing-Western Hubei.展开更多
Taking the Cambrian Yuertus Formation outcrop profiles in the Aksu-Keping-Wushi areas of northwestern Tarim Basin as examples, the depositional environments of organic rich fine sediment were analyzed by examining the...Taking the Cambrian Yuertus Formation outcrop profiles in the Aksu-Keping-Wushi areas of northwestern Tarim Basin as examples, the depositional environments of organic rich fine sediment were analyzed by examining the outcrop profiles macroscopically and microscopically. The study reveals that:(1) The lower part of the Yuertus Formation consists of organic-rich fine sediment or thin rhythmic interbeds of organic-rich fine sediment and siliceous sediment, the formation transforms to terrigenous diamictic grain shoal and inverse grading carbonate rocks upward.(2) The thin limestone interbedded with dark shale rhythmically has inverse grading.(3) The thin-bedded siliceous rock has metasomatic residual granular texture, stromatolithic structure and cementation fabric in vugs.(4) There are iron crust layers at the top of the shallowing diamictic grain shoal, beneath which exposed karst signs, such as karrens, dissolved fissures, sack-like vugs, near surface karst(plastic) breccia, breccia inside the karst system and terrigenous clastic fillings, can be seen.(5) Both the outcrops and seismic profiles show that organic-rich fine sediments above the unconformities or exposed surfaces are characterized by overlapping. The organic-rich fine sediment of the Cambrian Yuertus Formation was deposited in the anoxic-suboxidized restricted gulf lagoon environment, and its formation was controlled by high paleoproductivity and poor oxygen exchange jointly, then a shallow-water overlapping sedimentary model has been established. The results will help enrich and improve the sedimentary theory of organic-rich fine sediments.展开更多
The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemis...The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
基金Supported by the Youth Science Foundation of National Natural Science Foundation of China(41502150)Petro China Science and Technology Project(2023ZZ21YJ04)。
文摘The shale of the Cambrian Qiongzhusi Formation in the Sichuan Basin is characterized by large burial depth and high maturity,but the shale gas enrichment pattern is still unclear.Based on the detailed characterization of Deyang-Anyue aulacogen,analysis of its depositional environments,together with reconstruction of shale gas generation and enrichment evolution against the background of the Leshan-Longnüsi paleouplift,the aulacogen-uplift enrichment pattern was elucidated.It is revealed that the Deyang-Anyue aulacogen controls the depositional environment of the Qiongzhusi Formation,where high-quality sedimentary facies and thick strata are observed.Meanwhile,the Leshan-Longnüsi paleouplift controls the maturity evolution of the shale in the Qiongzhusi Formation,with the uplift located in a high position and exhibiting a moderate degree of thermal evolution and a high resistivity.The aulacogen-uplift overlap area is conducive to the enrichment of shale gas during the deposition,oil generation,gas generation,and oil-gas adjustment stage,which also has a joint control on the development of reservoirs,resulting in multiple reservoirs of high quality and large thickness.Based on the aulacogen-uplift enrichment pattern and combination,four types of shale gas play are identified,and the sweet spot evaluation criteria for the Qiongzhusi Formation is established.Accordingly,a sweet spot area of 8200 km^(2)in the aulacogen is determined,successfully guiding the deployment of Well Zi 201 with a high-yield industrial gas flow of 73.88×10^(4) m^(3)/d.The new geological insights on the aulacogen-uplift enrichment pattern provide a significant theoretical basis for the exploration and breakthrough of deep to ultra-deep Cambrian shale gas,highlighting the promising exploration prospect in this domain.
基金Supported by the PetroChina Science and Technology Project (2021DJ0605,2022KT0101)the CNPC Major Science and Technology Project (2021DJ0501)。
文摘Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation.
基金supported by the National Natural Science Foundation Research (Grant 41672130, 41728004)the National Key S&T Special Projects (Grant 2016ZX05061-003-001)+1 种基金the National Postdoctoral Innovative Talent Support Program (Grant BX201700289)China Postdoctoral Science Foundation (Grant 2017M620296)
文摘Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, Longbizui and Yanbei areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the content of Mobio(biogenic molybdenum), Babio(biogenic barium) and phosphorus, is positively correlated with TOC. The main alkanes in studied samples are nCC, and odd–even priority values are closed to 1(0.73–1.13), which suggest the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to explain the relationship between data and the factors affecting organic accumulation:(1) quartz-rich and clay-mineral-poor deep shelf–slope–basin environment was favorable for living organisms;(2) high productivity provided the material foundation for organic generation;(3) the redox conditions impact slightly on the content of organic matter under high productivity and dysoxic–anoxic condition.
基金Supported by the National Key Research and Development Program of China(2017YFC0603101)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)Scientific Research and Technological Development Project of PetroChina(2018A-01).
文摘Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin filling process and paleo-geography of north Tarim Basin in Early Cambrian,aiming to analyze the factors controlling the distribution and spatial architecture of the subsalt reservoir and source units and to define the favorable exploration direction.The Late Sinian tectonic activities in the northern Tarim Basin were characterized by different patterns in different areas,which controlled the sedimentary pattern in the Early Cambrian.The boundary faults of Nanhuaian rift basin in the south slope of Tabei uplift and the north slope of Tazhong uplift became reactivated in the Early Cambrian,forming two NEE and EW striking subsidence centers and depocenters,where the predicted thickness of the Yurtusi Formation could reach 250 meters.In the Xiaoerbulake period,the weak rimmed platform was developed in the hanging wall of syndepositional fault.Whereas the Nanhuaian rift system in the Tadong and Manxi areas were uplifted and destroyed in the Late Sinian,and appeared as gently slope transiting toward the subsidence center in the Early Cambrian.The former had the sedimentary features of hybrid facies platform and the latter had the sedimentary features of ramp platform.The black shale of the Yurtus Formation in the footwall of syndepositional fault and the reef bank of Xiaoerbulake Formation platform margin in the hanging wall in Early Cambrian constitute a predicable source-reservoir combination.The activity intensity of syndepositional fault controlled the thickness of black shale and the scale of the reef bank.It is suggested carrying out high accuracy seismic exploration to determine the location of Early Cambrian syndepositional faults,on this basis,to search the reef bank of Xiaoerbulake Formation along the faults westward,and then drill risk exploration wells at sites where traps are shallow in buried depth.
基金Supported by the China National Science and Technology Major Project(2016ZX05004)
文摘The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.
基金Supported by the China National Science and Technology Major Project(2016ZX05007-002).
文摘Comprehensively utilizing the seismic,logging,drilling and outcrop data,this research studies the characteristics of the Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin.The results show that:(1)Three groups of faults striking North-East(NE),near East-West(EW),and North-West(NW)were developed in the Cambrian.The NE and near EW faults,dominated by the normal faults,are the synsedimentary faults and the main faults of the Cambrian.(2)According to the roles of faults in tectonic units and the development scale of the faults,the Cambrian faults can be divided into three grades.The second-grade faults,large in scale,controlled the boundary of the Cambrian sags of the Ordos Basin.The third-grade faults,smaller in scale than the second-grade fault,controlled the high and low fluctuations of local structures.The fourth-grade faults,very small in scale,were adjusting faults developed inside the local tectonic units.(3)The Cambrian faults had strong control on the sedimentation and reservoir of the Cambrian.Controlled by the second-grade and the third-grade faults,the paleogeographical framework of the Cambrian presents combination characteristics of the bulge-sag macro-structures and the high-low differentiation micro-geomorphology.This paleogeographical pattern not only controlled the development of the oolitic beach facies in the Cambrian but also the distribution of high-quality reservoirs.(4)Under the control of the faults,the micro-paleogeomorphological high parts closely adjacent to the margin of the Cambrian sags are the favorable exploration areas.
基金Supported by the PetroChina Science and Technology Major Project(2016E-0602)。
文摘Based on drilling data of JT1 and CS1,outcrop profiles and seismic data,the sedimentary pattern,space configuration of source-reservoir-cap combinations and paleouplift evolution characteristics of the Cambrian Lower Canglangpu Member in the central Sichuan paleouplift have been investigated to determine the favorable exploration zones.Controlled by Deyang-Anyue rift,the Lower Canglangpu Member features differential characteristics from east to west in sedimentary framework.In the west side of the Deyang-Anyue rift,this member is composed of clastic sediments,while in the east side of the Deyang-Anyue rift,it is fresh water shelf sediments,with grain beaches occurring along edges of the depressions,shelf and lagoon.Among the beaches,the dolomitic ones are mainly distributed around the depression edge and in the north of the lagoon.The beach sediments could become high quality reservoirs under the effect of karstification.Underlying the Lower Canglangpu Member is the widespread source rock of the Qiongzhusi Formation,so oil and gas generated by the Qiongzhusi Formation source rock can directly charge into the beach reservoirs.The sandy mudstone of the Upper Canglangpu Member can serve as the caprock of the Lower Canglangpu Member reservoir.The dolomitic beaches are located at the higher part of the paleo-uplift during the main accumulation period,with good hydrocarbon accumulation elements.Blocks PT1-CS1,HT1-GT2 and east GT2 are favorable exploration zones.
基金Supported by the National Natural Science Foundation of China(41772103)China National Science and Technology Major Project(2016ZX05007-002)Petrochina Science and Technology Major Project(2016E-0204)。
文摘Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.
基金funded by the National Basic Research Program of China (Grant 2012CB214801)Tarim Oilfield Branch of Petro China (Grant 041013100042)。
文摘The study on Lower Cambrian dolostones in Tarim Basin can improve our understanding of ancient and deeply buried carbonate reservoirs.In this research,diagenetic fluid characteristics and their control on porosity evolution have been revealed by studying the petrography and in situ geochemistry of different dolomites.Three types of diagenetic fluids were identified:(1) Replacive dolomites were deviated from shallow burial dolomitizing fluids,which might probably be concentrated ancient seawater at early stage.(2) Fine-to-medium crystalline,planar-e diamond pore-filling dolomites(Fd1) were likely slowly and sufficiently crystallized from deep-circulating crustal hydrothermal fluids during Devonian.(3) Coarse crystalline,non-planar-a saddle pore-filling dolomites(Fd2) might rapidly and insufficiently crystallize from magmatic hydrothermal fluids during Permian.Early dolomitizing fluids did not increase the porosity,but transformed the primary pores to dissolution pores through dolomitization.Deep-circulating crustal hydrothermal fluids significantly increased porosity in the early stages by dissolving and then slightly decreased the porosity in the late stage due to Fd1 precipitation.Magmatic hydrothermal fluids only precipitated the Fd2 dolomites and slightly decreased the porosity.In summary,Devonian deep-circulating crustal hydrothermal fluids dominated the porosity evolution of the Lower Cambrian dolostone reservoir in the Tarim Basin.
基金Supported by the China National Science and Technology Major Project(2016ZX05005-004-006)
文摘Carbonate dissolution during the process of burial and evolution by percolating acid fluid was simulated using core plugs to analyze the characteristics and controlling factors of Cambrian carbonate rock dissolution in the Tarim Basin. The results showed that mineral composition and reservoir space type control selective dissolution. In the carbonate rock strata with high calcite content, the calcite is likely to dissolve first to form secondary dissolution pores; gypsum and anhydrite in the carbonate rock can be dissolved to form mold pores in contemporaneous and penecontemporaneous stages. Porous carbonate has mainly enlargement of matrix pores, with porosity and permeability increasing correspondingly, but not obviously. In comparison, dominant channels for fluid are likely to occur in fractured carbonate or porous carbonate forming cracks under high pressure, resulting in a relative reduction in the dissolution volume, but great increase of permeability. With the rise of temperature and pressure, corrosion ability of acid fluid to carbonate rock increases first and then decreases, there exists an optimum range of temperature and pressure for dissolution, which corresponds to the buried depth of 2 250-3 750 m of the Cambrian. Considering reservoir characteristics of the study area, it is concluded that calcite in the penecontemporaneous period is the material basis for the development of dissolution pore, and carbonate rock were mainly dissolved by early atmospheric fresh water, superimposed and reformed to form high quality reservoirs by multiple acid fluids including deep hydrothermal fluid and acid fluid generated during the process of organic thermal evolution under burial condition.
基金National Natural Science Foundation of China(42072171)National Oil and Gas Major Science and Technology Project(2016ZX05007-002)。
文摘Based on the latest drilling cores,thin sections,and 3D seismic data,types,features,and evolution processes of Cambrian-Ordovician carbonate platforms in the Gucheng and Xiaotang areas are studied,and favorable exploration zones in this area are also discussed.There are two types of carbonate platforms developed in the Cambrian-Ordovician in the Gucheng-Xiaotang area,namely,carbonate ramp and rimmed platforms,and the evolution process of the platform in the Gucheng area is different from that in Xiaotang area.In the Early Cambrian,the study area was a homoclinal carbonate ramp.During the Middle to Late Cambrian,it evolved into a rimmed platform,with 5 phases of mound shoals developed.In the southern area,mound shoals were in progradational arrangement and the third and fourth stages of mound shoals suffering exposure and further developed abundant karst vugs.In the northern area,the mound shoals appeared in a superposition of aggradation-weak progradation,the third,fourth,and fifth stages of mound shoals suffered exposure and dissolution,and the platform slope developed gravity flow deposits.In the Early to Middle Ordovician,the southern area gradually evolved into a distally steepened carbonate ramp,where retrogradational dolomitic shoal developed;while the northern part experienced an evolution process from a weakly rimmed platform to a distally steepened carbonate ramp,and developed two or three stages of retrogradational mound shoals.The high-frequency oscillation of sea level and local exposure and dissolution were beneficial to the formation of mound or shoal reservoirs in platform margin and ramp,and the configuration of these reservoirs with low energy slope-basin facies source rocks could form good oil-gas enrichment zones.The dolomitic shoal in the Ordovician platform ramp is the practical exploration field for increasing reserve and production in the Gucheng area.The mound shoal at the Cambrian rimmed platform margin is the key exploration object in the Xiaotang area.In addition,the Cambrian slope gravity flow deposits can be taken as the favorable exploration fields in the study area.
基金Supported by the National Natural Science Foundation of China(41572133,41372141)
文摘The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.
基金Chinese Academy of Sciences Strategic Pilot Science and Technology Project(Class A)(XDA14010403)National Science and Technology Major Project(2016ZX05007)PetroChina Science and Technology Project(2021DJ0604,kt2020-01-03)。
文摘Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.
基金Supported by CNPC Science and Technology Major Project(2016ZX052,2016ZX05015-003)
文摘By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective.
基金Supported by the PetroChina Science and Technology Major Project(2016E-0601)
文摘Based on isotopic, lithologic and electrical data and logging cycle analysis technique, stratigraphic sequences in the Middle-Upper Cambrian Xixiangchi Group in the Sichuan Basin and its adjacent area are divided, and its sedimentary characteristics and evolution are analyzed. The Xixiangchi Group can be divided into 5 third-order sequences(Sql-Sq5), of which sequences Ⅰ to Ⅲ(Sql-Sq3) are relatively complete, sequences Ⅳ and Ⅴ are denuded in the Late Cambrian because of the Dian-Chuan paleo-uplifts.Third-order sequences of the Xixiangchi Group in this area have the characteristics of thin in the west and thick in the east, showing that the Caledonian paleo-uplift is a synsedimentary paleo-uplift and the paleogeomorphology in the platform is a gentle slope. Sequence Ⅰdevelops high stand systems tract and transgressive systems tract. The other third-order sequences are dominated by highstand systems tracts, and the transgressive systems tracts last shortly in time and are limited in area. The basic features of evaporative-restricted platform of gentle slope type developed continuously in the sedimentary period of the Xixiangchi Group, its sedimentary environment of "high in west and low in east" and the change of micro paleogeomorphology in the platform control the continuous development of sedimentary facies. Open platform is developed only in sequence Ⅰ and sequence Ⅱ, and the inner beach of the platform and the edge beach of the platform are mostly developed in sequence Ⅱ and sequence Ⅲ. It indicates that there are two platform margin zones in the study area,a relatively stable, large-scale platform marginal zone in NE Guizhou-Western Hunan and Hubei, and a moving and small-scale platform marginal zone in North Chongqing-Western Hubei.
基金Supported by the China National Science and Technology Major Project(2016ZX05004002-001)the National Natural Science Foundation of China(41602147)
文摘Taking the Cambrian Yuertus Formation outcrop profiles in the Aksu-Keping-Wushi areas of northwestern Tarim Basin as examples, the depositional environments of organic rich fine sediment were analyzed by examining the outcrop profiles macroscopically and microscopically. The study reveals that:(1) The lower part of the Yuertus Formation consists of organic-rich fine sediment or thin rhythmic interbeds of organic-rich fine sediment and siliceous sediment, the formation transforms to terrigenous diamictic grain shoal and inverse grading carbonate rocks upward.(2) The thin limestone interbedded with dark shale rhythmically has inverse grading.(3) The thin-bedded siliceous rock has metasomatic residual granular texture, stromatolithic structure and cementation fabric in vugs.(4) There are iron crust layers at the top of the shallowing diamictic grain shoal, beneath which exposed karst signs, such as karrens, dissolved fissures, sack-like vugs, near surface karst(plastic) breccia, breccia inside the karst system and terrigenous clastic fillings, can be seen.(5) Both the outcrops and seismic profiles show that organic-rich fine sediments above the unconformities or exposed surfaces are characterized by overlapping. The organic-rich fine sediment of the Cambrian Yuertus Formation was deposited in the anoxic-suboxidized restricted gulf lagoon environment, and its formation was controlled by high paleoproductivity and poor oxygen exchange jointly, then a shallow-water overlapping sedimentary model has been established. The results will help enrich and improve the sedimentary theory of organic-rich fine sediments.
基金Supported by the Sinopec Major Science and Technology Project(P22081)National Natural Science Foundation of China(U24B60001).
文摘The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.