Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have...Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.展开更多
Software testing is a very important phase of the software development process. It is a very difficult job for a software manager to allocate optimally the financial budget to a software project during testing. In thi...Software testing is a very important phase of the software development process. It is a very difficult job for a software manager to allocate optimally the financial budget to a software project during testing. In this paper the problem of optimal allocation of the software testing cost is studied. There exist several models focused on the development of software costs measuring the number of software errors remaining in the software during testing. The purpose of this paper is to use these models to formulate the optimization problems of resource allocation: Minimization of the total number of software errors remaining in the system. On the assumption that a software project consists of some independent modules, the presented approach extends previous work by defining new goal functions and extending the primary assumption and precondition.展开更多
The developing market of information technologies i s the most dynamical and thriving business in the modern world. The law of supply and demand establishes repeating, steady cause and effect relation between three ec...The developing market of information technologies i s the most dynamical and thriving business in the modern world. The law of supply and demand establishes repeating, steady cause and effect relation between three economic phenomena-price, supply and demand. Demand is an ideal need and a real opportunity of the customer to buy the goods. Supply is an ideal readiness and a real opportunity of the commodity producer to put the goods on the market . A plethora of factors affect the supply and demand. There is inverse dependenc e between the market price of the goods and the quantity which is in the demand. There is direct dependence between the market price of the goods and the qu antity which is offered to the buyer. The following features distinguish the sof tware from the usual goods in the consumer market: high science intensity, simpl icity of replicating, relative simplicity of modification and updating, high req uirements to quality of the software, at sale the buyer gets it, but it does no t disappear in sale, there is no physical deterioration, but there is a fast ob solescence. To protect the programs against the non-authorized access (the copy ings and operation) technical and legal methods are used: the patent protection, status of industrial secret, license agreements.展开更多
Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challe...Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challenges that MWN has to face. Software-defined network is expected as a promising way for future network and has captured growing attention. Network virtualization is an essential feature in software-defined wireless network(SDWN), and it brings two new entities, physical networks and virtual networks. Accordingly, efficiently assigning spectrum resource to virtual networks is one of the fundamental problems in SDWN. Directly orienting towards the spectrum resource allocation problem, firstly, the fluctuation features of virtual network requirements in SDWN are researched, and the opportunistic spectrum sharing method is introduced to SDWN. Then, the problem is proved as NP-hardness. After that, a dynamic programming and graph theory based spectrum sharing algorithm is proposed.Simulations demonstrate that the opportunistic spectrum sharing method conspicuously improves the system performance up to around 20%–30% in SDWN, and the proposed algorithm achieves more efficient performance.展开更多
在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键...在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键词或二者结合进行建模,主要解决为给定Mashup推荐合适云API的问题,未考虑开发者对个性化高阶互补云API的实际需求。该文提出一种基于个性化张量分解的高阶互补云API推荐方法(Personalized Tensor Decomposition based High-order Complementary cloud API Recommendation,PTDHCR)。首先,将Mashup与云API之间的调用关系,以及云API与云API之间的互补关系建模为三维张量,并利用RECAL张量分解技术对这两种关系进行共同学习,以挖掘云API之间的个性化非对称互补关系。然后,考虑到不同互补关系对推荐结果的影响程度不同,构建个性化高阶互补感知网络,充分利用Mashup、查询云API以及候选云API的多模态特征,动态计算Mashup对不同查询和候选云API之间互补关系的关注程度。在此基础上,将个性化互补关系拓展到高阶,得到候选云API与查询云API集合的整体个性化互补性。最后,利用两个真实云API数据集进行实验,结果表明,相较于传统方法,PTDHCR在挖掘个性化互补关系和推荐方面具有较大的优势。展开更多
软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件...软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.展开更多
Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially ...Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially under suboptimal environments. Additional challenges are genetic differences between purebreds (selected animals) and crossbreds (commercial animals), and possibly different environments for these groups of animals. A successful genetic selection at this time requires comprehensive data for all levels of the pyramid, multitrait models for a variety of traits including categorical and survival, and software that can implement complicated models while supporting large data sets. Many projects in pig genetic evaluation are carried out at the University of Georgia. Those studies are supported by software family called BGF90.展开更多
文摘Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.
文摘Software testing is a very important phase of the software development process. It is a very difficult job for a software manager to allocate optimally the financial budget to a software project during testing. In this paper the problem of optimal allocation of the software testing cost is studied. There exist several models focused on the development of software costs measuring the number of software errors remaining in the software during testing. The purpose of this paper is to use these models to formulate the optimization problems of resource allocation: Minimization of the total number of software errors remaining in the system. On the assumption that a software project consists of some independent modules, the presented approach extends previous work by defining new goal functions and extending the primary assumption and precondition.
文摘The developing market of information technologies i s the most dynamical and thriving business in the modern world. The law of supply and demand establishes repeating, steady cause and effect relation between three economic phenomena-price, supply and demand. Demand is an ideal need and a real opportunity of the customer to buy the goods. Supply is an ideal readiness and a real opportunity of the commodity producer to put the goods on the market . A plethora of factors affect the supply and demand. There is inverse dependenc e between the market price of the goods and the quantity which is in the demand. There is direct dependence between the market price of the goods and the qu antity which is offered to the buyer. The following features distinguish the sof tware from the usual goods in the consumer market: high science intensity, simpl icity of replicating, relative simplicity of modification and updating, high req uirements to quality of the software, at sale the buyer gets it, but it does no t disappear in sale, there is no physical deterioration, but there is a fast ob solescence. To protect the programs against the non-authorized access (the copy ings and operation) technical and legal methods are used: the patent protection, status of industrial secret, license agreements.
基金supported by the National Natural Science Foundation of China(6102100161133015+4 种基金61171065)the National Natural Science Foundation of China(973 Program)(2013CB329001)the National High Technology ResearchDevelopment Program(863 Program)(2013AA0106052013AA013500)
文摘Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challenges that MWN has to face. Software-defined network is expected as a promising way for future network and has captured growing attention. Network virtualization is an essential feature in software-defined wireless network(SDWN), and it brings two new entities, physical networks and virtual networks. Accordingly, efficiently assigning spectrum resource to virtual networks is one of the fundamental problems in SDWN. Directly orienting towards the spectrum resource allocation problem, firstly, the fluctuation features of virtual network requirements in SDWN are researched, and the opportunistic spectrum sharing method is introduced to SDWN. Then, the problem is proved as NP-hardness. After that, a dynamic programming and graph theory based spectrum sharing algorithm is proposed.Simulations demonstrate that the opportunistic spectrum sharing method conspicuously improves the system performance up to around 20%–30% in SDWN, and the proposed algorithm achieves more efficient performance.
文摘在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键词或二者结合进行建模,主要解决为给定Mashup推荐合适云API的问题,未考虑开发者对个性化高阶互补云API的实际需求。该文提出一种基于个性化张量分解的高阶互补云API推荐方法(Personalized Tensor Decomposition based High-order Complementary cloud API Recommendation,PTDHCR)。首先,将Mashup与云API之间的调用关系,以及云API与云API之间的互补关系建模为三维张量,并利用RECAL张量分解技术对这两种关系进行共同学习,以挖掘云API之间的个性化非对称互补关系。然后,考虑到不同互补关系对推荐结果的影响程度不同,构建个性化高阶互补感知网络,充分利用Mashup、查询云API以及候选云API的多模态特征,动态计算Mashup对不同查询和候选云API之间互补关系的关注程度。在此基础上,将个性化互补关系拓展到高阶,得到候选云API与查询云API集合的整体个性化互补性。最后,利用两个真实云API数据集进行实验,结果表明,相较于传统方法,PTDHCR在挖掘个性化互补关系和推荐方面具有较大的优势。
文摘软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.
文摘Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially under suboptimal environments. Additional challenges are genetic differences between purebreds (selected animals) and crossbreds (commercial animals), and possibly different environments for these groups of animals. A successful genetic selection at this time requires comprehensive data for all levels of the pyramid, multitrait models for a variety of traits including categorical and survival, and software that can implement complicated models while supporting large data sets. Many projects in pig genetic evaluation are carried out at the University of Georgia. Those studies are supported by software family called BGF90.