Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination...Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination of which is critically related to the chemomechanical coupling mechanism of the motor. Here, we use three models for the load dependence of the detachment rate of the kinesin motor to study theoretically and numerically the maximal force generated and microtubuleattachment duration of the motor. By comparing the theoretical and numerical results with the available experimental data,we show that only one model can explain well the available experimental data, indicating that only this model can be applicable to the kinesin motor.展开更多
Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integ...Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.展开更多
Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particl...Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.展开更多
Overpressure is a key factor for oil and gas charging in tight reservoirs,but it is still a challenge to evaluate the overpressure evolution and its control on oil and gas charging.Taking Xujiahe Formation in the nort...Overpressure is a key factor for oil and gas charging in tight reservoirs,but it is still a challenge to evaluate the overpressure evolution and its control on oil and gas charging.Taking Xujiahe Formation in the northeastern Sichuan Basin as an example,this paper presented a method for evaluating overpressure and its effect on natural gas charging in tight sandstone in compressional basin.The abnormally high pressure and its causes were analyzed by measured data and logging evaluation.Theoretical calculation and PVT simulation were used to investigate the amounts of overpressure resulted from hydrocarbon generation and tecto nic compression,respectively.Then the source rock-reservoir pressu re differences were calculated and the characteristics of natural gas charging during the natural gas charging periods were analyzed.It was revealed that hydrocarbon generation and tectonic compression were the main causes of the overpressure.The overpressure of both source rocks and reservoir exhibited a gradually increasing trend from Middle Jurassic to Early Cretaceous(J2-K1),then decreased since Later Cretaceous(K2),and some of that preserved to now.The contributions of the hydrocarbon generation and tectonic compression to overpressure were different in different periods.The residual pressure difference between the source rocks and the reservoir is the major driving force for tight sandstone gas charging.The main hydrocarbon generating area of the source rocks and the area of high driving force were major natural gas enrichment areas,and the driving force determined the natural gas charging space in the pore throat system of the reservoir.This research helps evaluate the overpressure and pressure difference between source rocks and reservoir in compressed basin,as well as investigate the effective pore throat space of tight gas charging by the driver of overpressure.展开更多
A dual-baffled rectangular tank with different configurations is proposed to reduce the sloshing effect,and design optimization is conducted through numerical simulations with open-source software,namely OpenFOAM,base...A dual-baffled rectangular tank with different configurations is proposed to reduce the sloshing effect,and design optimization is conducted through numerical simulations with open-source software,namely OpenFOAM,based on the computational fluid dynamic model.A series of physical experiments in the dual-baffled rectangular tank is performed for model validation and design optimization with the measured water surface elevation distributions along the tank.The optimization uses the calculated maximum horizontal force exerted on the tank and entropy generation(EG)as the criterion.Results show that the dual-baffle configuration positioned at the tank center is more effective in reducing the sloshing than that of the single baffle when the relative baffle height and initial water depth ratio(Hb/Hw,where Hb and Hw represent baffle height and static water depth,respectively)are larger than 0.5.However,such an effect then diminishes when the ratio is larger than 0.75.The effect of the dual-baffle configuration on the sway motion under the condition of different motion amplitudes and frequencies is also evaluated.The results show that the reduction in the maximum horizontal force is almost the same for dual-and single-baffled configurations and reaches the minimum when the sway motion amplitude is near 0.03 m.The dual-baffled configuration for the angular frequency of the sway motion is more effective than the single-baffled in reducing the sloshing at the low angular frequencies but is only less effective at high angular frequencies.Furthermore,the optimal baffle inclination angle is 85°when the inclined straight and curved baffles are used,and curved baffles can successfully decrease the horizontal force exerted on the tank and EG.展开更多
基金Project supported by Youth Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202404522)。
文摘Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination of which is critically related to the chemomechanical coupling mechanism of the motor. Here, we use three models for the load dependence of the detachment rate of the kinesin motor to study theoretically and numerically the maximal force generated and microtubuleattachment duration of the motor. By comparing the theoretical and numerical results with the available experimental data,we show that only one model can explain well the available experimental data, indicating that only this model can be applicable to the kinesin motor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)the National Basic Research Program of China(Grant No.2011CB301704)+1 种基金the Program for New Century Excellent Talents in Ministry of Education of China(Grant No.NCET-11-0168)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)
文摘Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064034)the Leading Talents Project of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)+1 种基金the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant Nos.2022AAC03643 and2022AAC03117)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China(Grant No.2022BDE03006)。
文摘Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.
基金financially supported by the Development Fund of Shandong Provincial Key Laboratory of Deep Oil and Gas,the Fundamental Research Funds for the Central Universities(20CX02110A)the National Natural Science Foundation of China(41702142)
文摘Overpressure is a key factor for oil and gas charging in tight reservoirs,but it is still a challenge to evaluate the overpressure evolution and its control on oil and gas charging.Taking Xujiahe Formation in the northeastern Sichuan Basin as an example,this paper presented a method for evaluating overpressure and its effect on natural gas charging in tight sandstone in compressional basin.The abnormally high pressure and its causes were analyzed by measured data and logging evaluation.Theoretical calculation and PVT simulation were used to investigate the amounts of overpressure resulted from hydrocarbon generation and tecto nic compression,respectively.Then the source rock-reservoir pressu re differences were calculated and the characteristics of natural gas charging during the natural gas charging periods were analyzed.It was revealed that hydrocarbon generation and tectonic compression were the main causes of the overpressure.The overpressure of both source rocks and reservoir exhibited a gradually increasing trend from Middle Jurassic to Early Cretaceous(J2-K1),then decreased since Later Cretaceous(K2),and some of that preserved to now.The contributions of the hydrocarbon generation and tectonic compression to overpressure were different in different periods.The residual pressure difference between the source rocks and the reservoir is the major driving force for tight sandstone gas charging.The main hydrocarbon generating area of the source rocks and the area of high driving force were major natural gas enrichment areas,and the driving force determined the natural gas charging space in the pore throat system of the reservoir.This research helps evaluate the overpressure and pressure difference between source rocks and reservoir in compressed basin,as well as investigate the effective pore throat space of tight gas charging by the driver of overpressure.
文摘A dual-baffled rectangular tank with different configurations is proposed to reduce the sloshing effect,and design optimization is conducted through numerical simulations with open-source software,namely OpenFOAM,based on the computational fluid dynamic model.A series of physical experiments in the dual-baffled rectangular tank is performed for model validation and design optimization with the measured water surface elevation distributions along the tank.The optimization uses the calculated maximum horizontal force exerted on the tank and entropy generation(EG)as the criterion.Results show that the dual-baffle configuration positioned at the tank center is more effective in reducing the sloshing than that of the single baffle when the relative baffle height and initial water depth ratio(Hb/Hw,where Hb and Hw represent baffle height and static water depth,respectively)are larger than 0.5.However,such an effect then diminishes when the ratio is larger than 0.75.The effect of the dual-baffle configuration on the sway motion under the condition of different motion amplitudes and frequencies is also evaluated.The results show that the reduction in the maximum horizontal force is almost the same for dual-and single-baffled configurations and reaches the minimum when the sway motion amplitude is near 0.03 m.The dual-baffled configuration for the angular frequency of the sway motion is more effective than the single-baffled in reducing the sloshing at the low angular frequencies but is only less effective at high angular frequencies.Furthermore,the optimal baffle inclination angle is 85°when the inclined straight and curved baffles are used,and curved baffles can successfully decrease the horizontal force exerted on the tank and EG.