Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liqu...Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.展开更多
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla...The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structure...The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.展开更多
The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial...The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro computed lomography(CT) scan can well describe internal microstruetures of composites. Therefore, a reconstructed model is developed based on mireo-CT, by a series of prodcedures including extrac tlng components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS. the presented reconstructed FE model is superior in terms of high mesh quality and eontrollable mesh cluantity. The precision of the model is verified by experiment.展开更多
Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre...Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.展开更多
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ...Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness.展开更多
In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The micr...In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.展开更多
To tailor properties of polymer composites are very important for their applications.Very small concentrations of nanoparticles can significantly alter their physical characteristics.In this work,molecular dynamics si...To tailor properties of polymer composites are very important for their applications.Very small concentrations of nanoparticles can significantly alter their physical characteristics.In this work,molecular dynamics simulations are performed to study the thermodynamic and structural properties of polystyrene/C60(PS/C60)composites.The calculated densities,glass transition temperatures,and coefficient of thermal expansion of the bulk PS are in agreement with the experimental data available,implying that our calculations are reasonable.We find that the glass transition temperature Tg increases accordingly with an added concentration of C60 for PS/C60 composites.However,the self-diffusion coefficient D decreases with increase of addition of C60.For the volumetric coefficients of thermal expansion(CTE)of bulk PS and PS/C60 composites,it can be seen that the CTE increases with increasing content of C60 above Tg(rubbery region).However,the CTE decreases with increasing content of C60 below Tg(glassy region).展开更多
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sint...Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110006110025)the National Natural Science Foundation of China(Grant No.U1134102)
文摘Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.
基金financially supported by the National Key R&D Program of China(No.2022YFB3-401900)the National Natural Science Foundation of China(No.U21A20134)the Shandong Provincial Natural Science Foundation(Excellent Young Fund,No.ZR2022YQ48).
文摘The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金financially supported by the National Natural Science Foundation of China(21471096)Shanghai Pujiang Program(17PJD015)
文摘The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.
基金supported by the National Natural Science Foundation of China (Nos.11272147,10772078)the Aviation Science Foundation (No.2013ZF52074)+1 种基金the State Key Laboratory of Mechanical Structural Mechanics and Control (No.0214G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The precise microscopic feature of carbon-carbon(C/C) composites is essential {or an accurate predic tion of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro computed lomography(CT) scan can well describe internal microstruetures of composites. Therefore, a reconstructed model is developed based on mireo-CT, by a series of prodcedures including extrac tlng components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS. the presented reconstructed FE model is superior in terms of high mesh quality and eontrollable mesh cluantity. The precision of the model is verified by experiment.
基金The authors acknowledge funding from the National Natural Science Foundation of China(Nos.51572157,21902085,and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(No.2018JC036 and No.2018JC046)Young Scholars Program of Shandong University(No.2018WLJH25).
文摘Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52276086 and 52130604)the Basic Research Program of China(Grant No.514010303-102)the K.C.Wong Education Foundation。
文摘Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. D5000210522 and D5000200408)Jiangsu Planned Projects for Postdoctoral Research Funds, National Natural Science Foundation of China [grant number 51772151]+2 种基金Natural Science Foundation of Shaanxi Province (Grant No. 2021JQ-117)Basic Research Programs of Taicang (Grant No.TC2020JC10)Natural Science Foundation of Shandong Province (Grant No. ZR2020QE180)
文摘In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704329)the Scientific Research Fund of Sichuan Provincial Education Department of China(Grant No.15ZB293)+1 种基金the Pre-Research Project of Yibin University of China(Grant No.2019YY06)the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province at Yibin University of China(Grant No.JSWL2014KF02).
文摘To tailor properties of polymer composites are very important for their applications.Very small concentrations of nanoparticles can significantly alter their physical characteristics.In this work,molecular dynamics simulations are performed to study the thermodynamic and structural properties of polystyrene/C60(PS/C60)composites.The calculated densities,glass transition temperatures,and coefficient of thermal expansion of the bulk PS are in agreement with the experimental data available,implying that our calculations are reasonable.We find that the glass transition temperature Tg increases accordingly with an added concentration of C60 for PS/C60 composites.However,the self-diffusion coefficient D decreases with increase of addition of C60.For the volumetric coefficients of thermal expansion(CTE)of bulk PS and PS/C60 composites,it can be seen that the CTE increases with increasing content of C60 above Tg(rubbery region).However,the CTE decreases with increasing content of C60 below Tg(glassy region).
基金supported by the National Natural Science Foundation of China(Grant No.51301075)the Project of Development and Reform Commission of Jilin Province,China(Grant No.2014Y136)
文摘Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.