Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ...This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.展开更多
Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is mad...Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.展开更多
Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many micro...Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. Zn O-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. Zn O is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered Zn O-NPs antibacterial activity including testing methods, impact of UV illumination, Zn O particle properties(size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species(ROS) including hydrogen peroxide(H2O2), OH-(hydroxyl radicals), and O2-2(peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to Zn O-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions.These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on Zn O abrasive surface texture. One functional application of the Zn O antibacterial bioactivity was discussed in food packaging industry where Zn O-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of Zn O-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.展开更多
The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health,which drives researchers to develop antibiotic-free strategies to eradicate these fie...The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health,which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes.Although enormous achievements have already been achieved,it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation.Recently,photothermal therapy(PTT)has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance.Until now,numerous photothermal agents have been studied for antimicrobial PTT.Among them,MXenes(a type of two-dimensional transition metal carbides or nitrides)are extensively investigated as one of the most promising candidates due to their high aspect ratio,atomic-thin thickness,excellent photothermal performance,low cytotoxicity,and ultrahigh dispersibility in aqueous systems.Besides,the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials.In this review,the synthetic approaches and textural properties of MXenes have been systematically presented first,and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented.Subsequently,recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes,including in vitro and in vivo sterilization,solar water evaporation and purification,and flexible antibacterial fabrics.Last but not least,the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes.展开更多
Copper oxide nanoflowers(CuO-NFs)have been synthesized through a novel green route using Tulsi leaves-extracted eugenol(4-allyl-2-methoxyphenol)as reducing agent.Characterizations results reveal the growth of crystall...Copper oxide nanoflowers(CuO-NFs)have been synthesized through a novel green route using Tulsi leaves-extracted eugenol(4-allyl-2-methoxyphenol)as reducing agent.Characterizations results reveal the growth of crystalline singlephase CuO-NFs with monoclinic structure.The prepared CuO-NFs can effectively degrade methylene blue with 90%efficiency.They also show strong barrier against E.coli(27±2 mm)at the concentration of 100μg mL−1,while at the concentration of 25μg mL−1 weak barrier has been found against all examined bacterial organisms.The results provide important evidence that CuO-NFs have sustainable performance in methylene blue degradation as well as bacterial organisms.展开更多
As the most abundant biopolymer on the earth,cellulose has recently gained significant attention in the development of antibacterial biomaterials.Biodegradability,renewability,strong mechanical properties,tunable aspe...As the most abundant biopolymer on the earth,cellulose has recently gained significant attention in the development of antibacterial biomaterials.Biodegradability,renewability,strong mechanical properties,tunable aspect ratio,and low density offer tremendous possibilities for the use of cellulose in various fields.Owing to the high number of reactive groups(i.e.,hydroxyl groups)on the cellulose surface,it can be readily functionalized with various functional groups,such as aldehydes,carboxylic acids,and amines,leading to diverse properties.In addition,the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure,such as proteins,polymers,metal nanoparticles,and antibiotics.There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents.However,little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility.In this study,we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials.Despite the high effectiveness of surface-modified cellulosic antibacterial materials,more studies on their mechanism of action,the relationship between their properties and their effectivity,and more in vivo studies are required.展开更多
A new kind of emulsion containing nano TiO_2 was developed through the dispersion experiment. A commercial emulsion and a prepared by our lab emulsion without nano particles were chosen as controls to test the tribolo...A new kind of emulsion containing nano TiO_2 was developed through the dispersion experiment. A commercial emulsion and a prepared by our lab emulsion without nano particles were chosen as controls to test the tribological and antibacterial properties of this new emulsion. The load carrying capacity, friction coefficient and average diameter of wear scars were tested by a four-ball machine and the comprehensive antifriction parameter ω was calculated. The wetting angle was also tested using a JC200C1 wetting angle tester. The micro surface and roughness of rolled strips were analyzed to investigate the tribological performance of the recommended new emulsion in strip production. It is shown that the new nano-emulsion possesses a higher load carrying capacity and wetting ability. Therefore the abrasive/plowing wear is reduced more efficiently with the addition of nano particles, and the micro surface is improved. The density of bacteria in the emulsions was tested after the cold rolling experiment. The emulsion breaking ratio and bacteria density were also tested in different time intervals after the cold rolling experiment. The final p H values and bacteria density of different layers of emulsions were measured and the sediment was analyzed by TEM to evaluate the antibacterial behavior of this new emulsion. It is shown that the density of microbial colonies which led to a corruption of emulsions was decreased about 90% and the effective antibacterial period was prolonged.展开更多
Introducing vacancy defects and unique morphology is an effective strategy to improve the catalytic performance of transition metal compounds.However,precisely controlling the amount of vacancy defects remains challen...Introducing vacancy defects and unique morphology is an effective strategy to improve the catalytic performance of transition metal compounds.However,precisely controlling the amount of vacancy defects remains challenging.Here,we propose a facile and efficient hydrothermal accompanying an annealing method to synthesize a series of Mn-doped CoO nanomaterials with controllable oxygen vacancies and unique morphology.The oxygen vacancies amount can be precisely controlled by adjusting the Mndoping content and is positively correlated with catalytic performance.It was found that the oxygen vacancies amount can reach up to 38.2%over the Mn-doped CoO nanomaterials,resulting in ultra-high hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalytic activity(HER:25.6 and 37 m V at 10 m A cm^(-2);OER:301 and 322 m V at 50 m A cm^(-2))under both basic and acidic conditions,while reaching 10 m A cm^(-2) for an ultra-low cell voltage of only 1.52 V,which exceeds that of Pt/C/RuO_(2) and all reported non-noble metal oxide catalysts.The DFT calculations reveal oxygen vacancies can optimize H*and HOO*intermediates adsorption free energy,thus improving the HER and OER performance.Interestingly,the Mn-doped CoO with rich oxygen vacancies exhibits excellent antibacterial properties in vitro of biomedicine.This work provides new ideas and methods for the rational design and precise control of vacancy defects in transition metal compounds and explores their potential application value in electrochemical water splitting and biomedical fields.展开更多
Multifunctional fabrics of high durability through a scalable and eco-friendly technique remains a great challenge hindering their commercialization.In this work,we report a facile synthesis technique for the fabricat...Multifunctional fabrics of high durability through a scalable and eco-friendly technique remains a great challenge hindering their commercialization.In this work,we report a facile synthesis technique for the fabrication of superhydrophobic antibacterial fabrics by employing fluorine-free silane coupling agents as cross-linkers for enhanced durability.Three silane cross-linkers,Aminoethylaminopropyltrimethoxysilane(AEAPTMS),Aminopropyltriethoxysilane(APTES),and Methacryloyloxypropyltrimethoxysilane(MPTMS),have been investigated.During the fabrication,a low surface energy polymer,polydimethylsiloxane(PDMS)was first deposited on cotton fabrics.Subsequently,antibacterial copper oxide(CuO)nanoparticles were anchored on the PDMS coated fabrics using the silane cross-linkers.The as-prepared fabrics displayed high superhydrophobicity and antibacterial performance with water contact angle(WCA)>153,water shedding angle(WSA)<5,and up to 99%antibacterial efficiency.Additionally,the as-prepared fabrics displayed high durability against abrasion,ultrasonic washing,and soaking in harsh chemical environments.The air permeability and flexibility of the fabric was not compromised after the coating.The above-reported technique is simple,cost-effective and holds tremendous potential for large-scale production of energy-saving clothing and healthcare products.展开更多
Reduced graphene oxide(rGO)has been widely used to fabricate electronics,sensors,photodetectors,and in other applications.However,the antibacterial performance of pristine rGO is relatively weak.The application of rGO...Reduced graphene oxide(rGO)has been widely used to fabricate electronics,sensors,photodetectors,and in other applications.However,the antibacterial performance of pristine rGO is relatively weak.The application of rGO in biomedical devices,smart food packaging,and water desalination membranes requires further improvement of rGO’s antibacterial abilities.Copper(I)oxide(Cu2O)is an effective antibacterial agent,which denatures protein and enhances the permeability of cell membranes.In this work,we report a simple method of synthesizing a highly antibacterial rGO/Cu2O nanocomposite from cellulose acetate,a derivative of abundant natural cellulose.The synthesized rGO/Cu2O nanocomposite was thoroughly characterized by Raman spectroscopy,X-ray powder diffraction(XRD),X-ray photoelectron spectroscopy(XPS),atomic force microscopy(AFM),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),and scanning transmission electron microscopy(STEM).Then,the antibacterial abilities of rGO/Cu2O nanocomposite were evaluated and a bactericidal mechanism was revealed from the molecular biology perspective.Results indicate that our synthesized rGO/Cu2O nanocomposite owns strong antibacterial activity,mainly stemming from the uniformly incorporated Cu2O nanocrystals with a lateral size of 5–40 nm.展开更多
Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electr...Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.展开更多
With the growing threat of airborne epidemics,there has been an increasing emphasis on personal protection.Masks serve as our primary external defense against bacteria and viruses that might enter the respiratory trac...With the growing threat of airborne epidemics,there has been an increasing emphasis on personal protection.Masks serve as our primary external defense against bacteria and viruses that might enter the respiratory tract.Hence,it’s crucial to develop a polypropylene(PP)nonwoven fabric with quick antibacterial capabilities as a key component for masks.This study introduces silver nanoclusters(AgNCs)into non-woven PP using radiation technology to infuse antibacterial properties.Initially,a solid ligand(PP-g-PAA)was procured via radiation grafting of the ligand polyacrylic acid(PAA),which was incorporated into the nonwoven PP with the aid of a crosslinking agent at a lower absorbed dosage.Subsequently,AgNCs were synthesized in situ on PP-g-PAA via an interaction between PAA and AgNCs,leading directly to the formation of AgNCs@PP-g-PAA composites.Owing to the hydrophilicity of PAA,AgNCs@PP-g-PAA maintains good moisture permeability even when the voids are heavily saturated with PAA gel,preventing droplet aggregation by diffusing droplets on the surface of the material.This feature enhances the comfort of the masks.Most importantly,due to the incorporation of AgNCs,AgNCs@PP-g-PAA demonstrates outstanding antibacterial effects against Escherichia coli and Staphylococcus aureus,nearly achieving an instant“touch and kill”outcome.In conclusion,we synthesized a modified nonwoven fabric with significant antibacterial activity using a simple synthetic route,offering a promising material that provides improved personal protection.展开更多
Zn(1-x)Cux O(x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacte...Zn(1-x)Cux O(x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5%(x = 0.05). However, the peak corresponding to CuO for x= 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30–52 nm. Doping Cu creates the Cu–O–Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli(Gram negative bacteria)cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping.展开更多
In order to solve the corrosion problem of circulating cooling water system,SA-ZnO@ODA-GO@PU super-hydrophobic coating was synthesized for pipeline protection.After hydrophobic modification,the contact angle(CA)of the...In order to solve the corrosion problem of circulating cooling water system,SA-ZnO@ODA-GO@PU super-hydrophobic coating was synthesized for pipeline protection.After hydrophobic modification,the contact angle(CA)of the coating was above 150°.The antibacterial ability of coating was essential for corrosion protection.SA-ZnO@ODA-GO can seriously damage the cell structure,make the cell content outflow,increase the leakage rate of protein,and make the bacteria unable to reach logarithmic growth phase within 24 h.The corrosion inhibition mechanism analysis of SA-ZnO@ODA-GO@PU coating indicated that the hydrophobic coating as a physical barrier can prevent the water molecules from entering the carbon steel and prevent the surface charge transfer.展开更多
Quaternary phosphonium salts (QPS) with reactive groups used as antibacterial agents are promising which could be covalently linked to inert polymer surfaces by in situ polymerization. In this work, two kinds of qua...Quaternary phosphonium salts (QPS) with reactive groups used as antibacterial agents are promising which could be covalently linked to inert polymer surfaces by in situ polymerization. In this work, two kinds of quaternary phosphonium salts with hydroxyl groups were synthesized successfully. Characterization of these two quaternary phosphonium salts was performed by the Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectrometry. The thermal stability and antibacterial activity of antibacterial agents were also investigated by using thermo-gravimetric analysis, differential scanning calorimetry (TG-DSC) and agar diffusion method. The test results showed that these two QPS exhibited good thermal stability and excellent antibacterial activity against both bacteria: Staphylococcus aureus and Escherichia coll.展开更多
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number(R.G.P.2/123/44).The author MBK would like to thank Prince Sultan University for their support.
文摘This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.
文摘Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.
基金support from a research university Grant number 1001/PFIZIK/814174 of Universiti Sains Malaysia(USM)
文摘Antibacterial activity of zinc oxide nanoparticles(Zn O-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. Zn O-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. Zn O is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered Zn O-NPs antibacterial activity including testing methods, impact of UV illumination, Zn O particle properties(size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species(ROS) including hydrogen peroxide(H2O2), OH-(hydroxyl radicals), and O2-2(peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to Zn O-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions.These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on Zn O abrasive surface texture. One functional application of the Zn O antibacterial bioactivity was discussed in food packaging industry where Zn O-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of Zn O-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
基金supported by the National Natural Science Foundation of China(21902085,51572157 and 82002793)the Natural Science Foundation of Shandong Province(ZR2019QF012,ZR2020QH183 and ZR2019BEM024)+1 种基金Shenzhen Fundamental Research Program(JCYJ20190807093205660 and JCYJ20190807092803583)the fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP202108).
文摘The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health,which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes.Although enormous achievements have already been achieved,it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation.Recently,photothermal therapy(PTT)has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance.Until now,numerous photothermal agents have been studied for antimicrobial PTT.Among them,MXenes(a type of two-dimensional transition metal carbides or nitrides)are extensively investigated as one of the most promising candidates due to their high aspect ratio,atomic-thin thickness,excellent photothermal performance,low cytotoxicity,and ultrahigh dispersibility in aqueous systems.Besides,the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials.In this review,the synthetic approaches and textural properties of MXenes have been systematically presented first,and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented.Subsequently,recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes,including in vitro and in vivo sterilization,solar water evaporation and purification,and flexible antibacterial fabrics.Last but not least,the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes.
文摘Copper oxide nanoflowers(CuO-NFs)have been synthesized through a novel green route using Tulsi leaves-extracted eugenol(4-allyl-2-methoxyphenol)as reducing agent.Characterizations results reveal the growth of crystalline singlephase CuO-NFs with monoclinic structure.The prepared CuO-NFs can effectively degrade methylene blue with 90%efficiency.They also show strong barrier against E.coli(27±2 mm)at the concentration of 100μg mL−1,while at the concentration of 25μg mL−1 weak barrier has been found against all examined bacterial organisms.The results provide important evidence that CuO-NFs have sustainable performance in methylene blue degradation as well as bacterial organisms.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)an NSERC-FPinnovations CRD grant for supporting this researchMcGill University for a MEDA fellowship.
文摘As the most abundant biopolymer on the earth,cellulose has recently gained significant attention in the development of antibacterial biomaterials.Biodegradability,renewability,strong mechanical properties,tunable aspect ratio,and low density offer tremendous possibilities for the use of cellulose in various fields.Owing to the high number of reactive groups(i.e.,hydroxyl groups)on the cellulose surface,it can be readily functionalized with various functional groups,such as aldehydes,carboxylic acids,and amines,leading to diverse properties.In addition,the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure,such as proteins,polymers,metal nanoparticles,and antibiotics.There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents.However,little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility.In this study,we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials.Despite the high effectiveness of surface-modified cellulosic antibacterial materials,more studies on their mechanism of action,the relationship between their properties and their effectivity,and more in vivo studies are required.
基金supported by the National Natural Science Foundation of China (contract/grant number: 51274037) affiliated to the project: "The research of lubrication model and interaction between nano-lubricating particles and rolling deformed surface."
文摘A new kind of emulsion containing nano TiO_2 was developed through the dispersion experiment. A commercial emulsion and a prepared by our lab emulsion without nano particles were chosen as controls to test the tribological and antibacterial properties of this new emulsion. The load carrying capacity, friction coefficient and average diameter of wear scars were tested by a four-ball machine and the comprehensive antifriction parameter ω was calculated. The wetting angle was also tested using a JC200C1 wetting angle tester. The micro surface and roughness of rolled strips were analyzed to investigate the tribological performance of the recommended new emulsion in strip production. It is shown that the new nano-emulsion possesses a higher load carrying capacity and wetting ability. Therefore the abrasive/plowing wear is reduced more efficiently with the addition of nano particles, and the micro surface is improved. The density of bacteria in the emulsions was tested after the cold rolling experiment. The emulsion breaking ratio and bacteria density were also tested in different time intervals after the cold rolling experiment. The final p H values and bacteria density of different layers of emulsions were measured and the sediment was analyzed by TEM to evaluate the antibacterial behavior of this new emulsion. It is shown that the density of microbial colonies which led to a corruption of emulsions was decreased about 90% and the effective antibacterial period was prolonged.
基金supported by the National Natural Science Foundation of China(52072196,52002199,52002200,52102106)the Major Basic Research Program of the Natural Science Foundation of Shandong Province(ZR2020ZD09)+1 种基金the Innovation and Technology Program of Shandong Province(2020KJA004)the Taishan Scholars Program of Shandong Province(ts201511034)。
文摘Introducing vacancy defects and unique morphology is an effective strategy to improve the catalytic performance of transition metal compounds.However,precisely controlling the amount of vacancy defects remains challenging.Here,we propose a facile and efficient hydrothermal accompanying an annealing method to synthesize a series of Mn-doped CoO nanomaterials with controllable oxygen vacancies and unique morphology.The oxygen vacancies amount can be precisely controlled by adjusting the Mndoping content and is positively correlated with catalytic performance.It was found that the oxygen vacancies amount can reach up to 38.2%over the Mn-doped CoO nanomaterials,resulting in ultra-high hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalytic activity(HER:25.6 and 37 m V at 10 m A cm^(-2);OER:301 and 322 m V at 50 m A cm^(-2))under both basic and acidic conditions,while reaching 10 m A cm^(-2) for an ultra-low cell voltage of only 1.52 V,which exceeds that of Pt/C/RuO_(2) and all reported non-noble metal oxide catalysts.The DFT calculations reveal oxygen vacancies can optimize H*and HOO*intermediates adsorption free energy,thus improving the HER and OER performance.Interestingly,the Mn-doped CoO with rich oxygen vacancies exhibits excellent antibacterial properties in vitro of biomedicine.This work provides new ideas and methods for the rational design and precise control of vacancy defects in transition metal compounds and explores their potential application value in electrochemical water splitting and biomedical fields.
基金Financial assistance from Ministry of Education,Singapore(RG 16/18)is gratefully acknowledged.
文摘Multifunctional fabrics of high durability through a scalable and eco-friendly technique remains a great challenge hindering their commercialization.In this work,we report a facile synthesis technique for the fabrication of superhydrophobic antibacterial fabrics by employing fluorine-free silane coupling agents as cross-linkers for enhanced durability.Three silane cross-linkers,Aminoethylaminopropyltrimethoxysilane(AEAPTMS),Aminopropyltriethoxysilane(APTES),and Methacryloyloxypropyltrimethoxysilane(MPTMS),have been investigated.During the fabrication,a low surface energy polymer,polydimethylsiloxane(PDMS)was first deposited on cotton fabrics.Subsequently,antibacterial copper oxide(CuO)nanoparticles were anchored on the PDMS coated fabrics using the silane cross-linkers.The as-prepared fabrics displayed high superhydrophobicity and antibacterial performance with water contact angle(WCA)>153,water shedding angle(WSA)<5,and up to 99%antibacterial efficiency.Additionally,the as-prepared fabrics displayed high durability against abrasion,ultrasonic washing,and soaking in harsh chemical environments.The air permeability and flexibility of the fabric was not compromised after the coating.The above-reported technique is simple,cost-effective and holds tremendous potential for large-scale production of energy-saving clothing and healthcare products.
文摘Reduced graphene oxide(rGO)has been widely used to fabricate electronics,sensors,photodetectors,and in other applications.However,the antibacterial performance of pristine rGO is relatively weak.The application of rGO in biomedical devices,smart food packaging,and water desalination membranes requires further improvement of rGO’s antibacterial abilities.Copper(I)oxide(Cu2O)is an effective antibacterial agent,which denatures protein and enhances the permeability of cell membranes.In this work,we report a simple method of synthesizing a highly antibacterial rGO/Cu2O nanocomposite from cellulose acetate,a derivative of abundant natural cellulose.The synthesized rGO/Cu2O nanocomposite was thoroughly characterized by Raman spectroscopy,X-ray powder diffraction(XRD),X-ray photoelectron spectroscopy(XPS),atomic force microscopy(AFM),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),and scanning transmission electron microscopy(STEM).Then,the antibacterial abilities of rGO/Cu2O nanocomposite were evaluated and a bactericidal mechanism was revealed from the molecular biology perspective.Results indicate that our synthesized rGO/Cu2O nanocomposite owns strong antibacterial activity,mainly stemming from the uniformly incorporated Cu2O nanocrystals with a lateral size of 5–40 nm.
基金financially supported by the National Natural Science Foundation of China(No.41706080)the Basic Frontier Science Research Program of the Chinese Academy of Sciences(No.ZDBS-LYDQC025)+1 种基金the Strategic Leading Science and Technology Program of the Chinese Academy of Sciences(No.XDA13040403)the Shandong Key Laboratory of Corrosion Science。
文摘Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.
文摘With the growing threat of airborne epidemics,there has been an increasing emphasis on personal protection.Masks serve as our primary external defense against bacteria and viruses that might enter the respiratory tract.Hence,it’s crucial to develop a polypropylene(PP)nonwoven fabric with quick antibacterial capabilities as a key component for masks.This study introduces silver nanoclusters(AgNCs)into non-woven PP using radiation technology to infuse antibacterial properties.Initially,a solid ligand(PP-g-PAA)was procured via radiation grafting of the ligand polyacrylic acid(PAA),which was incorporated into the nonwoven PP with the aid of a crosslinking agent at a lower absorbed dosage.Subsequently,AgNCs were synthesized in situ on PP-g-PAA via an interaction between PAA and AgNCs,leading directly to the formation of AgNCs@PP-g-PAA composites.Owing to the hydrophilicity of PAA,AgNCs@PP-g-PAA maintains good moisture permeability even when the voids are heavily saturated with PAA gel,preventing droplet aggregation by diffusing droplets on the surface of the material.This feature enhances the comfort of the masks.Most importantly,due to the incorporation of AgNCs,AgNCs@PP-g-PAA demonstrates outstanding antibacterial effects against Escherichia coli and Staphylococcus aureus,nearly achieving an instant“touch and kill”outcome.In conclusion,we synthesized a modified nonwoven fabric with significant antibacterial activity using a simple synthetic route,offering a promising material that provides improved personal protection.
基金Project supported by the Universiti Teknologi Malaysia(UTM)(Grant No.R.J1300000.7809.4F626)RMC for postdoctoral grants
文摘Zn(1-x)Cux O(x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5%(x = 0.05). However, the peak corresponding to CuO for x= 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30–52 nm. Doping Cu creates the Cu–O–Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli(Gram negative bacteria)cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping.
基金supported by the CNPC Safety and Environmental Protection Key Technology Research and Promotion Project (2017D-4613)the Sub Project of National Science and Technology Major Project (2016ZX05040-003)
文摘In order to solve the corrosion problem of circulating cooling water system,SA-ZnO@ODA-GO@PU super-hydrophobic coating was synthesized for pipeline protection.After hydrophobic modification,the contact angle(CA)of the coating was above 150°.The antibacterial ability of coating was essential for corrosion protection.SA-ZnO@ODA-GO can seriously damage the cell structure,make the cell content outflow,increase the leakage rate of protein,and make the bacteria unable to reach logarithmic growth phase within 24 h.The corrosion inhibition mechanism analysis of SA-ZnO@ODA-GO@PU coating indicated that the hydrophobic coating as a physical barrier can prevent the water molecules from entering the carbon steel and prevent the surface charge transfer.
文摘Quaternary phosphonium salts (QPS) with reactive groups used as antibacterial agents are promising which could be covalently linked to inert polymer surfaces by in situ polymerization. In this work, two kinds of quaternary phosphonium salts with hydroxyl groups were synthesized successfully. Characterization of these two quaternary phosphonium salts was performed by the Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectrometry. The thermal stability and antibacterial activity of antibacterial agents were also investigated by using thermo-gravimetric analysis, differential scanning calorimetry (TG-DSC) and agar diffusion method. The test results showed that these two QPS exhibited good thermal stability and excellent antibacterial activity against both bacteria: Staphylococcus aureus and Escherichia coll.