Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these lo...Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.展开更多
We prove that the adjoint semigroup of an implicative BCK algebra is an upper semilattice, and the adjoint semigroup of an implicative BCK algebra with condition(s) is a generalized Boolean algebra. Moreover we prov...We prove that the adjoint semigroup of an implicative BCK algebra is an upper semilattice, and the adjoint semigroup of an implicative BCK algebra with condition(s) is a generalized Boolean algebra. Moreover we prove the adjoint semigroup of a bounded implicative BCK algebra is a Boolean algebra.展开更多
基金Project (J51801) supported by Shanghai Education Commission Key DisciplineProject(08ZY79)supported by Shanghai Education Commission Research FundProject(DZ207004)supported by Shanghai Second Polytechnic University Fund
文摘Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.
文摘We prove that the adjoint semigroup of an implicative BCK algebra is an upper semilattice, and the adjoint semigroup of an implicative BCK algebra with condition(s) is a generalized Boolean algebra. Moreover we prove the adjoint semigroup of a bounded implicative BCK algebra is a Boolean algebra.