期刊文献+
共找到1,165篇文章
< 1 2 59 >
每页显示 20 50 100
Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox 被引量:5
1
作者 黄晋英 潘宏侠 +1 位作者 毕世华 杨喜旺 《Journal of Central South University》 SCIE EI CAS 2008年第S2期409-415,共7页
Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on parti... Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault. 展开更多
关键词 PSO blind source separation FAULT diagnosis FAULT information enhancement GEARBOX
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
2
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted K-means clustering.
在线阅读 下载PDF
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
3
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
在线阅读 下载PDF
Online blind source separation based on joint diagonalization 被引量:2
4
作者 Li Ronghua Zhou Guoxu Yang Zuyuan Xie Shengli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期229-233,共5页
A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, ... A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm. 展开更多
关键词 blind source separation joint diagonalization nonconvex optimization
在线阅读 下载PDF
Blind source separation of ship-radiated noise based on generalized Gaussian model 被引量:2
5
作者 Kong Wei Yang Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期321-325,共5页
When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ... When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function. 展开更多
关键词 blind source separation (BSS) independent component analysis (ICA) generalized Gaussian model(GGM) maximum likelihood (ML).
在线阅读 下载PDF
Algorithm for source recovery in underdetermined blind source separation based on plane pursuit 被引量:1
6
作者 FU Weihong WEI Juan +1 位作者 LIU Naian CHEN Jiehu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期223-228,共6页
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin... In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms. 展开更多
关键词 underdetermined blind source separation(UBSS) source recovery greedy algorithm plane pursuit
在线阅读 下载PDF
On-line blind source separation algorithm based on second order statistics 被引量:1
7
作者 何文雪 谢剑英 杨煜普 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期692-696,共5页
An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculati... An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculation, the whitening matrix and the rotation matrix could be approximately obtained through the measurement of only one cost function. SimNations show goad performance of the algorithm. 展开更多
关键词 blind source separation second order statistics cost function.
在线阅读 下载PDF
Blind radar signal separation algorithm based on third-order degree of cyclostationarity criteria
8
作者 FAN Xiangyu LIU Bin +2 位作者 DONG Danna CHEN You WANG Yuancheng 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1441-1453,共13页
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o... Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals. 展开更多
关键词 blind signal separation cyclostationary frequency Givens matrix degree of cyclostationarity(DCS)blind source separation algorithm
在线阅读 下载PDF
A Blind Separation Approach of Low Order Cyclostationary Signals
9
作者 Wang Zhiyang Chen Jin Du Wenliao 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期159-164,共6页
This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity an... This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity and reducing the randomicity of cyclostationary signal and it is particularly applicable to the separation of low order cyclostationary signals.The method also demonstrates the importance of extraction of cyclostationary signals from low order to high order in turn.The effectiveness of the proposed method is finally demonstrated by computer simulation and experiment. 展开更多
关键词 blind source separation CYCLOSTATIONARY CYCLIC AUTOCORRELATION function machine FAULT diagnosis
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法
10
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
在线阅读 下载PDF
基于K-PSO和StOMP的往复压缩机激振信号盲源分离
11
作者 王金东 马智超 +2 位作者 赵海洋 李彦阳 张宇 《机床与液压》 北大核心 2025年第3期228-234,共7页
在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K... 在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K均值聚类算法,将产生的结果反馈至PSO聚类中估计混合矩阵。在获得混合矩阵后,将其源信号矩阵转化成列数为1的向量,再通过分段正交匹配追踪算法重构源信号。将实测的往复压缩机正常信号和3种单一故障信号混合成2种复合故障信号,并对复合故障信号进行试验验证。结果表明:在计算时间方面,相较模糊C均值聚类(0.335 s)和K均值聚类(0.299 s),尽管K-PSO聚类方法牺牲了一部分效率(1.561 s),但在总体角度偏差和归一化均方根误差方面表现更优,具有更好的估计精度;相较最短路径法(0.123 s),StOMP算法同样牺牲效率(2.031 s),却获得更佳的相关系数和均方根误差,表现更好的分离重构能力。这说明,该方法在盲源分离中具有可行性和实际应用价值。 展开更多
关键词 往复压缩机 欠定盲源分离 K均值聚类 粒子群算法 分段正交匹配追踪
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
12
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于盲源分离的多人呼吸信号检测方法
13
作者 杨轩 王子颖 +2 位作者 张力 赵恒 洪弘 《雷达学报(中英文)》 北大核心 2025年第1期117-134,共18页
近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常... 近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常将相位信号作为源信号进行分离,该文引入FMCW雷达下距离维信号和相位信号的对比,推导出相位信号作为源信号存在近似误差,并通过仿真验证距离维信号作为源信号时分离效果更好。另外,该文提出了基于非圆复数独立成分分析的多人呼吸信号分离算法,分析了不同呼吸信号参数对分离效果的影响,仿真和实测实验表明,所提出的方法适用于天线个数不小于目标个数时多人呼吸信号的检测,并且在目标角度差为9.46°时,也能够准确分离呼吸信号。 展开更多
关键词 非接触呼吸检测 FMCW雷达 多人呼吸检测 盲源分离 复数独立成分分析
在线阅读 下载PDF
基于张量分解的加速欠定盲源分离算法
14
作者 李志一 李雄飞 +3 位作者 姚如贵 郑世杰 谢熠 左晓亚 《信号处理》 北大核心 2025年第3期515-523,共9页
盲源分离(Blind Source Separation,BSS)可以在源信号和混合模型未知情况下,仅依据源信号的统计特性便可从观测信号中恢复源信号,凭借着该技术优势BSS现已成为信号处理领域的关键技术,在无线通信、生物医学、机械工业等领域得到了广泛... 盲源分离(Blind Source Separation,BSS)可以在源信号和混合模型未知情况下,仅依据源信号的统计特性便可从观测信号中恢复源信号,凭借着该技术优势BSS现已成为信号处理领域的关键技术,在无线通信、生物医学、机械工业等领域得到了广泛的应用。欠定盲源分离技术(观测信号数目小于源信号数目)作为盲源分离中的一个重要分支,更加符合现实应用场景。传统的欠定盲源分离技术利用观测信号的稀疏性进行聚类求解,然而,在复杂的通信环境中,信号的稀疏性极易受到噪声的干扰导致信号稀疏性被破坏,难以在低信噪比情况下实现欠定盲源分离,极大地限制了该类算法的应用范围。为了解决上述问题,本文提出了一种基于张量分解的加速欠定盲源分离算法。该算法首先,以观测信号在不同时延处的三阶累积量作为统计信息构造四阶张量,并利用高阶奇异值分解(High Order SVD,HOSVD)对四阶张量进行压缩以降低张量维度,在充分描述信号特征的同时降低了计算复杂度。随后,将混合矩阵估计问题转为张量分解问题。最后,利用增强平面搜索(Enhanced Plane Search,EPS)算法将搜索空间分解为多个平面,在每个平面上进行搜索,在搜索过程中对搜索空间进行增强以加快交替最小二乘法(Alternating Least Squares,ALS)收敛速度,同时避免了收敛陷入“瓶颈”状态。实验结果表明,该算法在信噪比为25 dB时,估计3×4混合矩阵的相对误差为-22.41 dB,相比于现有的算法估计混合矩阵性能更好,且收敛速度更快。 展开更多
关键词 欠定盲源分离 三阶累积量 高阶奇异值分解 增强平面搜索算法
在线阅读 下载PDF
基于改进独立成分分析的雨声信号盲源分离研究
15
作者 曾豫宁 行鸿彦 《仪器仪表学报》 北大核心 2025年第5期135-145,共11页
针对传统基于负熵等目标函数的快速独立成分分析法(FASTICA)在雨声信号盲源分离中产生的幅度扩大,分离性能较差等问题,提出了一种改进的独立成分分析(ICA)方法。不再采用传统基于负熵、峰度等复杂目标函数,选择基于最大化信号的非高斯性... 针对传统基于负熵等目标函数的快速独立成分分析法(FASTICA)在雨声信号盲源分离中产生的幅度扩大,分离性能较差等问题,提出了一种改进的独立成分分析(ICA)方法。不再采用传统基于负熵、峰度等复杂目标函数,选择基于最大化信号的非高斯性,通过双曲余弦函数与对数函数的组合进行非线性变换,同时以源信号与分离信号的均值差平方重新构建目标函数,同时为了提高算法的运行、收敛速度以及寻优能力,引入粒子群算法(PSO)替代传统梯度下降法,利用其快速全局搜索能力对目标函数进行寻优,有效规避ICA在迭代过程中易陷入局部最优的问题,获取最佳解混矩阵后进行雨声混合信号的分离,提取较纯净的雨声信号。实验结果表明,改进后的ICA能够满足盲源分离需求,分离指标(PI)达到了10-2级别。为了进一步验证所提算法的有效性与稳定性,在不同雨声类型与环境噪声混合场景下分别进行了盲源分离实验,结果显示所提改进ICA算法在不同环境噪声背景下的混合信号中均能有效分离并恢复出源雨声信号。此外,将改进目标函数的ICA与基于负熵的FASTICA算法进行对比,所提算法不仅能够有效解决FASTICA算法产生的幅度扩大问题,并且收敛速度更快,均方误差(MSE)降低了两个数量级,不同雨声类型下的信号失真比(SDR)均提升了近20 dB。 展开更多
关键词 雨声信号 盲源分离 独立成分分析 粒子群算法 非线性变换
在线阅读 下载PDF
利用下采样处理盲源分离的抗间歇采样转发干扰方法
16
作者 刘一品 于雷 位寅生 《电子与信息学报》 北大核心 2025年第8期2521-2534,共14页
间歇采样转发干扰(ISRJ)作为一种新型相干干扰,兼具压制和欺骗效果,对雷达探测造成了极大的威胁。随着数字射频存储器的发展,其轻量化特性使得目标能够携带ISRJ干扰机产生自卫干扰,因此传统的盲源分离等空域抗干扰方法难以进行有效抑制... 间歇采样转发干扰(ISRJ)作为一种新型相干干扰,兼具压制和欺骗效果,对雷达探测造成了极大的威胁。随着数字射频存储器的发展,其轻量化特性使得目标能够携带ISRJ干扰机产生自卫干扰,因此传统的盲源分离等空域抗干扰方法难以进行有效抑制。该文针对间歇采样转发干扰抑制问题,提出了一种基于下采样处理盲源分离的抗间歇采样转发干扰方法。首先对单路含干扰的回波信号进行解线频调处理,并对其进行下采样,通过改变下采样保留位置得到多路下采样输出信号,其中的干扰和目标成分满足盲源分离的线性混合模型;随后对多路下采样输出进行盲源分离,从而分离出干扰分量和目标分量,并通过脉冲压缩和目标检测输出目标回波信号,达到抗干扰效果。仿真结果表明,该方法在自卫干扰场景下,能够有效抑制直接转发、重复转发以及频移转发等多种ISRJ类型;此外无需对ISRJ参数进行高精度估计,受干扰能量和切片宽度影响更小,更有利于工程应用。 展开更多
关键词 雷达抗干扰 间歇采样转发干扰 盲源分离 下采样
在线阅读 下载PDF
基于改进狮群算法的混合图像盲分离
17
作者 夏清雨 丁元明 +1 位作者 张然 杨阳 《计算机应用与软件》 北大核心 2025年第5期224-230,254,共8页
针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基... 针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基于矢量距的惯性权重调整算法的搜索平衡。算法分别以信号的负熵和峭度作为目标函数,通过求解目标函数,实现对混合信号的盲分离。仿真结果表明,所提算法可以有效地分离含噪混合图像,具有比对比算法更优异的分离性能,而且在基于峭度的目标函数下分离性能更好。 展开更多
关键词 盲源分离 独立分量分析 狮群算法 蝴蝶算法 免疫浓度选择 惯性权重
在线阅读 下载PDF
基于盲源分离结合奇异谱分析的雷达多分量信号识别方法
18
作者 聂千祁 沙明辉 +2 位作者 朱应申 王崇宇 崔念强 《系统工程与电子技术》 北大核心 2025年第4期1168-1175,共8页
针对阵列在同波束内同时接收到多个雷达信号、造成时域混叠,难以进行信号检测与参数测量,进而导致信号调制类型识别困难的问题,提出一种基于盲源分离结合奇异谱分析的雷达多分量信号识别方法。首先,利用奇异谱分析对接收到的阵列信号进... 针对阵列在同波束内同时接收到多个雷达信号、造成时域混叠,难以进行信号检测与参数测量,进而导致信号调制类型识别困难的问题,提出一种基于盲源分离结合奇异谱分析的雷达多分量信号识别方法。首先,利用奇异谱分析对接收到的阵列信号进行降噪处理,再使用盲源分离方法对混叠的多分量信号进行分离;然后,对分离信号进行时频变换,得到信号时频图;最后,将时频图作为深度学习网络的输入,对信号进行识别。仿真结果表明,在5 dB下,所提方法对同波束内接收的多分量信号的平均识别率达到92.67%,有较好的识别效果。 展开更多
关键词 盲源分离 信号识别 时频分析 深度学习
在线阅读 下载PDF
UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals 被引量:12
19
作者 Weihong Fu Yongqiang Hei Xiaohui Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期911-920,共10页
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ... By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions. 展开更多
关键词 frequency hopping(FH) underdetermined blind source separation(UBSS) parameters estimation CLUSTERING
在线阅读 下载PDF
基于稀疏编码的复杂机械振动信号盲分离方法 被引量:4
20
作者 王金东 王畅 +3 位作者 赵海洋 李彦阳 曹威龙 黄飞虎 《噪声与振动控制》 CSCD 北大核心 2024年第1期168-173,186,共7页
复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中... 复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中相关成分的存在严重影响混合矩阵的估计。对此,首先对观测信号进行短时傅里叶变换,增加信号稀疏性;然后利用稀疏编码筛选出具备直线聚类特性的时频观测点,利用K均值(K-means)聚类法找到聚类中心;最后利用所提筛选规则找到估计的混合矩阵,重构出源信号。通过对往复压缩机故障数据的分析,验证了所提方法有效性。 展开更多
关键词 振动与波 盲源分离 相关源 稀疏编码 直线聚类 压缩机故障信号
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部