期刊文献+
共找到17,521篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of laser plasma wakefield acceleration with external injection based on Bayesian optimization
1
作者 Jianhua ZHONG Jiabao GUAN +3 位作者 Lanxin LIU Guoxing XIA Jike WANG Yuancun NIE 《Plasma Science and Technology》 2025年第4期22-29,共8页
In laser wakefield acceleration,injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance.In this paper,the pro... In laser wakefield acceleration,injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance.In this paper,the process of laser wakefield acceleration with an external injection at 10 pC has been studied in simulations.A Bayesian optimization method is used to optimize the key laser and plasma parameters so that the electron beam is accelerated to the expected energy with a small emittance and energy spread growth.The effect of the rising edge of the plasma on the transverse properties of the electron beam is simulated and optimized in order to ensure that the external electron beam is injected into the plasma without significant emittance growth.Finally,a high-quality electron beam with an energy of 1.5 GeV,a normalized transverse emittance of 0.5 mm·mrad and a relative energy spread of 0.5%at 10 pC is obtained. 展开更多
关键词 laser wakefield acceleration bayesian optimization external injection high quality electron beam(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
环境激励下的Bayesian SFFT模态参数识别法及不确定性量化研究
2
作者 郭琦 张卓 蒲广宁 《振动与冲击》 EI CSCD 北大核心 2024年第23期194-202,共9页
针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值... 针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值,并采用蒙特卡罗抽样的方法得到后验协方差矩阵和信息熵,实现对识别结果进行双重不确定性量化的目的。最后,通过数值模拟与工程应用验证了该方法的有效性,并研究了频带宽度系数k对识别结果的影响以及对比了变异系数与信息熵的量化效果。结果表明,将频带宽度系数k限制在7~9之间能够确保误差与不确定性的平衡;在阻尼比识别结果的量化中,信息熵的量化效果优于变异系数的量化效果。 展开更多
关键词 模态参数识别 不确定性量化 贝叶斯缩放快速傅里叶变换(bayesian SFFT) 蒙特卡罗抽样 频带宽度系数 变异系数 信息熵
在线阅读 下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
3
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer bayesian networks
在线阅读 下载PDF
Enhancing photovoltaic power prediction using a CNN-LSTM-attention hybrid model with Bayesian hyperparameter optimization
4
作者 Ning Zhou Bowen Shang +2 位作者 Mingming Xu Lei Peng Yafei Zhang 《Global Energy Interconnection》 EI CSCD 2024年第5期667-681,共15页
Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively ad... Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data. 展开更多
关键词 Photovoltaic power prediction CNN-LSTM-Attention bayesian optimization
在线阅读 下载PDF
Stochastic seismic inversion and Bayesian facies classification applied to porosity modeling and igneous rock identification
5
作者 Fábio Júnior Damasceno Fernandes Leonardo Teixeira +1 位作者 Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期918-935,共18页
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ... We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability. 展开更多
关键词 Stochastic inversion bayesian classification Porosity modeling Carbonate reservoirs Igneous rocks
在线阅读 下载PDF
Plasma current tomography for HL-2A based on Bayesian inference
6
作者 刘自结 王天博 +5 位作者 吴木泉 罗正平 王硕 孙腾飞 肖炳甲 李建刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期165-173,共9页
An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to rec... An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy. 展开更多
关键词 plasma current tomography bayesian inference machine learning Gaussian distribution
在线阅读 下载PDF
基于Lasso-Bayesian改进的Kriging代理模型优化方法及其应用
7
作者 陈再续 田宏杰 +1 位作者 刘亚举 周春 《煤矿机械》 2024年第12期194-199,共6页
为提高Kriging模型的性能并构建高精度代理模型,基于最小绝对收缩和选择算子(Lasso)与Bayesian算法对Kriging方法进行改进,实现了对Kriging模型的超参数调优,提出Lasso-Bayesian-Kriging代理模型的构建方法。采用Lasso正则化对模型输入... 为提高Kriging模型的性能并构建高精度代理模型,基于最小绝对收缩和选择算子(Lasso)与Bayesian算法对Kriging方法进行改进,实现了对Kriging模型的超参数调优,提出Lasso-Bayesian-Kriging代理模型的构建方法。采用Lasso正则化对模型输入进行特征选择,以降低模型复杂度,提高模型的泛化能力。使用Bayesian算法对Kriging中的相关参数、相关函数以及回归函数进行调优,得到高精度的Kriging代理模型。针对某车间加工矿用钻杆过程中的搬运桁架的实际工程问题,采用4种不同方法对桁架静力学分析进行代理建模,以桁架质量和变形量为代理对象,通过k折交叉验证,结果表明,Lasso-Bayesian-Kriging方法构建的代理模型精度最高,其交叉验证的平均决定系数R2分别为0.999、0.962。将优化算法与Lasso-Bayesian-Kriging模型相结合对桁架进行迭代优化,结果表明优化后的桁架在满足刚度的前提下实现了轻量化。 展开更多
关键词 KRIGING模型 bayesian优化 Lasso正则化 代理模型 工程优化
在线阅读 下载PDF
Multiple Targets Localization Algorithm Based on Covariance Matrix Sparse Representation and Bayesian Learning
8
作者 Jichuan Liu Xiangzhi Meng Shengjie Wang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期119-129,共11页
The multi-source passive localization problem is a problem of great interest in signal pro-cessing with many applications.In this paper,a sparse representation model based on covariance matrix is constructed for the l... The multi-source passive localization problem is a problem of great interest in signal pro-cessing with many applications.In this paper,a sparse representation model based on covariance matrix is constructed for the long-range localization scenario,and a sparse Bayesian learning algo-rithm based on Laplace prior of signal covariance is developed for the base mismatch problem caused by target deviation from the initial point grid.An adaptive grid sparse Bayesian learning targets localization(AGSBL)algorithm is proposed.The AGSBL algorithm implements a covari-ance-based sparse signal reconstruction and grid adaptive localization dictionary learning.Simula-tion results show that the AGSBL algorithm outperforms the traditional compressed-aware localiza-tion algorithm for different signal-to-noise ratios and different number of targets in long-range scenes. 展开更多
关键词 grid adaptive model bayesian learning multi-source localization
在线阅读 下载PDF
A new method for evaluating the firing precision of multiple launch rocket system based on Bayesian theory
9
作者 Yunfei Miao Guoping Wang Wei Tian 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期232-241,共10页
How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi... How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%. 展开更多
关键词 Multiple launch rocket system bayesian theory Simulation credibility Mixed prior distribution Firing precision
在线阅读 下载PDF
Bayesian model averaging(BMA)for nuclear data evaluation
10
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 bayesian model averaging(BMA) Nuclear data Nuclear reaction models Model parameters TALYS code system Covariances
在线阅读 下载PDF
Load Statistics Priority Random Access Technology Based on Air-Space-Ground Integrated Network
11
作者 Enze Li Hao Huan +1 位作者 Jingyu Wang Kunshan Yang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期493-506,共14页
In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constan... In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems. 展开更多
关键词 air-space-ground integrated network random access satellite-to-ground statistics priority access success probability
在线阅读 下载PDF
基于Bayesian-Stackelberg博弈的无人机抗干扰通信功率控制方法
12
作者 宋海伟 苏哲 +3 位作者 田达 魏阳杰 高阳 刘东 《航天电子对抗》 2024年第6期25-28,共4页
在非合作环境下开展了无人机功率控制问题的研究,考虑到无人机与干扰源的对抗竞争关系,假设无人机作为领导者选择功率策略首先进行行动,干扰源作为跟随者感知到无人机行为后选择干扰功率策略。此外,由于无人机获知干扰源信息的不完全性... 在非合作环境下开展了无人机功率控制问题的研究,考虑到无人机与干扰源的对抗竞争关系,假设无人机作为领导者选择功率策略首先进行行动,干扰源作为跟随者感知到无人机行为后选择干扰功率策略。此外,由于无人机获知干扰源信息的不完全性,提出Bayesian-Stackelberg博弈模型来刻画二者对抗行为,并进一步提出分层Q学习算法求解博弈均衡解,以实现无人机功率控制方案的稳定收敛。最后,仿真实验验证了所提方法的有效性。 展开更多
关键词 功率控制 Q学习 bayesian-Stackelberg
在线阅读 下载PDF
基于静力触探试验和变维联合后验分布的土层剖面高效优化识别方法
13
作者 曹子君 胡超 +4 位作者 王亚飞 苗聪 刘涛 洪义 郑硕 《岩土工程学报》 北大核心 2025年第2期346-354,共9页
基于静力触探试验数据的土体力学分类方法(如土体分类指数I_(c))应用广泛。然而,基于土体分类指数划分土层依赖于工程经验,主观不确定性较大,土体力学分层与基于钻孔取样的物性分层未必一致。在贝叶斯学习框架下,提出了一种基于I_(c)数... 基于静力触探试验数据的土体力学分类方法(如土体分类指数I_(c))应用广泛。然而,基于土体分类指数划分土层依赖于工程经验,主观不确定性较大,土体力学分层与基于钻孔取样的物性分层未必一致。在贝叶斯学习框架下,提出了一种基于I_(c)数据和土层力学剖面参数联合概率分布的高效优化识别方法。所提方法基于全高斯概率模型推导土体分类指数(I_(c))数据的似然函数,利用模拟退火算法搜索土层剖面参数联合后验分布的最大值,通过比较不同土层数目对应的联合后验分布最大值识别土层数目和土层厚度(边界)。最后,通过杭州某地铁区间CPT数据和模拟数据说明了所提方法的合理性和有效性,并结合土层识别结果说明了所提方法的分层原理和特点。结果表明:所提方法基于I_(c)数据识别土体力学分层的计算效率显著提高,适用于不同深度CPT数据分析,计算流程较简便,便于工程应用。 展开更多
关键词 静力触探试验 土体力学分层 贝叶斯方法 空间变异性
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
14
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
SPME-Arrow/GC-MS结合多元统计分析研究不同批次爆珠香精组分差异
15
作者 刘琪 张华 +4 位作者 叶远青 刘昌泽 袁益来 廖惠云 吴君章 《分析测试学报》 CAS 北大核心 2025年第1期135-144,共10页
以箭型固相微萃取(SPME-Arrow)为样品萃取手段,通过优化萃取头种类、氯化钠添加量、萃取温度、平衡时间及萃取时间等条件,构建了高效鉴定爆珠香精中挥发性及半挥发性化合物的箭型固相微萃取结合气相色谱-质谱联用(SPME-Arrow/GC-MS)法... 以箭型固相微萃取(SPME-Arrow)为样品萃取手段,通过优化萃取头种类、氯化钠添加量、萃取温度、平衡时间及萃取时间等条件,构建了高效鉴定爆珠香精中挥发性及半挥发性化合物的箭型固相微萃取结合气相色谱-质谱联用(SPME-Arrow/GC-MS)法。采用该方法对不同批次爆珠香精进行分析,结合主成分分析(PCA)、正交偏最小二乘-判别分析(OPLS-DA)及显著性F检验等多元统计分析手段,筛选显著性差异成分。结果表明:最佳萃取条件为优选DVB/CAR/PDMS萃取头,添加2.0 g氯化钠,在60℃下平衡50 min,萃取时间为40 min;经谱库检索结合保留指数辅助定性,共鉴定出96种挥发性、半挥发性组分,目标物峰面积的日间相对标准偏差(RSD)小于10%的色谱峰数量占总峰数量的92.7%,表明方法的重复性较好;从不同批次爆珠香精中共筛选出17个潜在差异化合物,通过显著性检验,确定10种显著性差异化合物,分别为α-蒎烯、柠檬烯、桉叶油醇、异胡薄荷醇、薄荷酮(含异构体)、新异薄荷醇、乙酸新薄荷酯、三辛酸甘油酯和二辛酸单癸酸甘油酯。该法可有效区分不同批次爆珠样品的组分差异,具有客观真实、准确可靠、可视化强等特点,能够为爆珠产品质量检验提供技术支持。 展开更多
关键词 箭型固相微萃取 气相色谱-质谱联用 多元统计分析 爆珠香精 差异化合物
在线阅读 下载PDF
非平稳异常噪声条件下的扩展目标跟踪方法
16
作者 陈辉 张欣雨 +2 位作者 连峰 韩崇昭 张光华 《电子与信息学报》 北大核心 2025年第3期803-813,共11页
针对非平稳异常噪声环境下扩展目标跟踪问题,该文提出一种基于高斯-学生t混合(GSTM)扩展目标跟踪方法。首先,将过程噪声和量测噪声建模为GSTM分布,以表征非平稳厚尾噪声,并通过引入伯努利随机变量,将目标的运动状态和量测似然函数建模... 针对非平稳异常噪声环境下扩展目标跟踪问题,该文提出一种基于高斯-学生t混合(GSTM)扩展目标跟踪方法。首先,将过程噪声和量测噪声建模为GSTM分布,以表征非平稳厚尾噪声,并通过引入伯努利随机变量,将目标的运动状态和量测似然函数建模为分层高斯形式。其次,在随机矩阵(RMM)滤波框架下,使用变分贝叶斯方法详细推导了非平稳厚尾噪声下的GSTM扩展目标跟踪算法。该算法通过建模高斯噪声与厚尾噪声之间的非平稳过程,精确表征噪声特性,从而在非平稳异常噪声环境下稳健捕捉扩展目标的质心位置和轮廓形态。最后,构建非平稳异常噪声环境下的扩展目标跟踪仿真实验,并通过高斯-瓦瑟斯坦距离对实验结果进行效果评估,验证了所提出算法的合理性。此外,真实场景实验结果进一步证明了该算法在实际应用中的有效性和鲁棒性。 展开更多
关键词 扩展目标跟踪 随机矩阵 高斯-学生t混合分布 变分贝叶斯方法
在线阅读 下载PDF
偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法
17
作者 邓洪高 余润华 +2 位作者 纪元法 吴孙勇 孙少帅 《电子与信息学报》 北大核心 2025年第1期156-166,共11页
针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏... 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。 展开更多
关键词 突变测量偏差 Beta-Bernoulli分布 逆Wishart分布 变分贝叶斯推断 边缘化容积卡尔曼滤波
在线阅读 下载PDF
基于WOA-VMD和贝叶斯估计的保护测量回路误差评估
18
作者 李振兴 柳灿 +2 位作者 翁汉琍 李振华 龚世玉 《三峡大学学报(自然科学版)》 北大核心 2025年第2期97-105,共9页
变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,... 变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,VMD)和贝叶斯估计的保护测量回路误差评估方法.针对保护测量回路的电流数据,引入WOA并结合包络熵作为适应度函数确定VMD的关键参数,基于WOA-VMD将原电流数据分解为本征模态;进一步为解决特征数目过多所带来的复杂数据分析问题,引入皮尔逊相关系数方法计算其各组系数优选特征量;最终利用贝叶斯估计法量化分析优选后的特征量信号实现误差判定.实验结果表明,本文的评估方法能够准确监测保护测量回路2%的误差偏移. 展开更多
关键词 保护测量回路 误差评估 鲸鱼优化算法 包络熵 皮尔逊相关系数 贝叶斯估计法
在线阅读 下载PDF
基于病案首页的神经外科住院绩效分析 被引量:1
19
作者 杨林朋 《中国医药科学》 2025年第1期179-182,共4页
目的基于病案首页的神经外科疾病诊断相关组(DRG)住院绩效分析,结合神经外科医疗水平的核心指标,实现资源合理配置,提升医疗效率。方法抽取郑州大学第一附属医院2023年7月1日至12月31日出院的住院病案首页6217份,采用常规指标,利用DRG... 目的基于病案首页的神经外科疾病诊断相关组(DRG)住院绩效分析,结合神经外科医疗水平的核心指标,实现资源合理配置,提升医疗效率。方法抽取郑州大学第一附属医院2023年7月1日至12月31日出院的住院病案首页6217份,采用常规指标,利用DRG组数、相对权重(RW)、DRG总量、病例组合指数(CMI)、费用消耗指数、时间消耗指数、手术分级、病种结构等指标对2023年7月1日至12月31日神经系统疾病住院医疗服务绩效进行评价。结果神经外科出院人次6217人次,DRG总量12736.72,CMI值2.0487,DRG组数151组,费用指数1.01,时间指数0.99,RW≥2为3107人次,占比49.97%,手术人次4024人,手术人次占比64.73%,三、四级合计3118人,三、四级占比77.49%。结论神经外科主要以收治疑难重症为主,DRG住院绩效反映的结果科学、客观。 展开更多
关键词 疾病诊断相关组 神经外科 住院绩效 统计分析
在线阅读 下载PDF
基于多米诺效应的储罐区事故风险评价技术研究
20
作者 李雪 张庆华 +2 位作者 赵永清 孔令超 谈坤 《石油化工安全环保技术》 2025年第2期35-38,58,I0003,共6页
为提高站场储罐区的应急响应和风险防控能力,通过对比扩展向量和失效阈值,确定了不同事故类型下的多米诺效应传播路径,通过贝叶斯网络并引入辅助节点提取不同层级多米诺效应概率,以某站场储罐区为研究对象完成了实例分析。结果表明,位... 为提高站场储罐区的应急响应和风险防控能力,通过对比扩展向量和失效阈值,确定了不同事故类型下的多米诺效应传播路径,通过贝叶斯网络并引入辅助节点提取不同层级多米诺效应概率,以某站场储罐区为研究对象完成了实例分析。结果表明,位于罐区角落且处于上风向的储罐发生火灾时,多米诺效应的传播路径最广;位于罐区中间位置的储罐在发生爆炸时,超压危害波及的范围更大,危险性更高。研究结果可为防灾减灾措施的制定提供理论依据。 展开更多
关键词 多米诺效应 贝叶斯网络 储罐区 事故概率 传播路径
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部