Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ...Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.展开更多
为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-direc...为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-directional long short-term memory,BiLSTM)建立了地表水水质预测模型。利用箱线图和Spearman秩相关系数挖掘水质的时空分布规律,划定中间河段4个站点为重点研究区域,NH3—N和TP为治理重点。通过BOA和双向信息传递机制优化LSTM超参数和模型结构,结果显示,用BOA-BiLSTM模型预测,未来4 h NH_(3)—N浓度的均方根误差(root mean squared error,RMSE)分别为0.2132,0.3689,0.3327和0.3740;未来4 h TP浓度的RMSE分别为0.0246,0.0321,0.0422和0.0334。二者较基准LSTM模型的预测结果分别提升了15.8%,10.6%,10.6%,17.1%和22.6%,3.6%,14.8%,11.8%。以磨石桥NH_(3)—N浓度为例,对比了时序预测与加入上下游数据后的多变量预测结果,发现时序预测对监测参数较少的平原河网具有更强的适用性和更高的预测精度。同时结合研究区域现场勘查和地块分类情况,指出生活源、污水收集及处理设施不完善、雨污合流应为整治重点。当监测参数有限时,本文模型有助于提升对水质异常的监管水平,为环境执法、水环境治理提供数据支撑。展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firep...The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.展开更多
在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。...在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。展开更多
基金This project was supported by the Fund of College Doctor Degree (20020699009)
文摘Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.
文摘为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-directional long short-term memory,BiLSTM)建立了地表水水质预测模型。利用箱线图和Spearman秩相关系数挖掘水质的时空分布规律,划定中间河段4个站点为重点研究区域,NH3—N和TP为治理重点。通过BOA和双向信息传递机制优化LSTM超参数和模型结构,结果显示,用BOA-BiLSTM模型预测,未来4 h NH_(3)—N浓度的均方根误差(root mean squared error,RMSE)分别为0.2132,0.3689,0.3327和0.3740;未来4 h TP浓度的RMSE分别为0.0246,0.0321,0.0422和0.0334。二者较基准LSTM模型的预测结果分别提升了15.8%,10.6%,10.6%,17.1%和22.6%,3.6%,14.8%,11.8%。以磨石桥NH_(3)—N浓度为例,对比了时序预测与加入上下游数据后的多变量预测结果,发现时序预测对监测参数较少的平原河网具有更强的适用性和更高的预测精度。同时结合研究区域现场勘查和地块分类情况,指出生活源、污水收集及处理设施不完善、雨污合流应为整治重点。当监测参数有限时,本文模型有助于提升对水质异常的监管水平,为环境执法、水环境治理提供数据支撑。
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金supported by the National Natural Science Foundation of China (10377014)the Innovation Foundation of Northwestern Polytechnical university (2007KJ01027)
文摘The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.
文摘在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。