To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s...To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.展开更多
降雨数值预报在预防极端天气和其他气象事件方面具有重要作用。通过提供可靠的概率预报,可以更准确地描述预报结果的不确定性,为决策者提供科学依据,从而提高应用价值和经济价值。以寸滩-三峡区间为研究对象,根据TIGGE资料中的ECMWF和NC...降雨数值预报在预防极端天气和其他气象事件方面具有重要作用。通过提供可靠的概率预报,可以更准确地描述预报结果的不确定性,为决策者提供科学依据,从而提高应用价值和经济价值。以寸滩-三峡区间为研究对象,根据TIGGE资料中的ECMWF和NCEP 2种模式,对2020-2022年(5-10月)逐日降水集合预报信息的精度进行评估。首先,采用Talagrand分布和Brier评分来评估不同预见期的集合预报能力;然后,采用贝叶斯模型平均(Bayesian model averaging,BMA)来修正集合预报;最后,对不同预见期的BMA修正值和实际降雨值之间的误差进行分析。结果显示:ECMWF和NCEP 2种模式的预报能力随预见期的增加逐渐下降,在不同预见期下,通过BMA修正后的降雨预报值具有更高的精度。展开更多
基金funding from the Paul ScherrerInstitute,Switzerland through the NES/GFA-ABE Cross Project。
文摘To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
文摘降雨数值预报在预防极端天气和其他气象事件方面具有重要作用。通过提供可靠的概率预报,可以更准确地描述预报结果的不确定性,为决策者提供科学依据,从而提高应用价值和经济价值。以寸滩-三峡区间为研究对象,根据TIGGE资料中的ECMWF和NCEP 2种模式,对2020-2022年(5-10月)逐日降水集合预报信息的精度进行评估。首先,采用Talagrand分布和Brier评分来评估不同预见期的集合预报能力;然后,采用贝叶斯模型平均(Bayesian model averaging,BMA)来修正集合预报;最后,对不同预见期的BMA修正值和实际降雨值之间的误差进行分析。结果显示:ECMWF和NCEP 2种模式的预报能力随预见期的增加逐渐下降,在不同预见期下,通过BMA修正后的降雨预报值具有更高的精度。