针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精...针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精度,将Bag of Words应用于干果图像识别和分类是可行的。展开更多
针对传统BOW(Bag of Words)模型用于场景图像分类时的不足,通过引入关联规则的MFI(Maximum Frequent Itemsets)和Topology模型对其进行改进。为了突出同类图像的视觉单词,提取同类图像的MFI后,对其中频繁出现的视觉单词进行加权处理,增...针对传统BOW(Bag of Words)模型用于场景图像分类时的不足,通过引入关联规则的MFI(Maximum Frequent Itemsets)和Topology模型对其进行改进。为了突出同类图像的视觉单词,提取同类图像的MFI后,对其中频繁出现的视觉单词进行加权处理,增强同类图像的共有特征。同时,为了提高视觉词典的生成效率,利用Topology模型对原始模型进行分工并行处理。通过COREL和Caltech-256图像库的实验,证明改进后的模型提高了对场景图像的分类性能,并验证了其Topology模型的有效性和可行性。展开更多
目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运...目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运输车本体运动模型,对观测模型进行去畸变处理,完成相机标定;设计基于视觉的自适应蒙特卡洛算法,获取特征信息,并用词袋模型进行分类,使用激光雷达构建2D栅格地图,采用特征点匹配估计位姿,实现AGV自我精确定位。结果仿真实验结果表明,本文所提算法与传统自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)算法相比,可使机器人更加快速地收敛到精度较高的位姿,具有更好的定位性能。结论基于视觉的AMCL算法设计,实现了导向辊生产车间机器人的高精度定位,优化了作业流程,提高了生产线系统智能化运行水平,可为其他场景定位应用提供参考。展开更多
文摘针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精度,将Bag of Words应用于干果图像识别和分类是可行的。
文摘针对传统BOW(Bag of Words)模型用于场景图像分类时的不足,通过引入关联规则的MFI(Maximum Frequent Itemsets)和Topology模型对其进行改进。为了突出同类图像的视觉单词,提取同类图像的MFI后,对其中频繁出现的视觉单词进行加权处理,增强同类图像的共有特征。同时,为了提高视觉词典的生成效率,利用Topology模型对原始模型进行分工并行处理。通过COREL和Caltech-256图像库的实验,证明改进后的模型提高了对场景图像的分类性能,并验证了其Topology模型的有效性和可行性。
文摘目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运输车本体运动模型,对观测模型进行去畸变处理,完成相机标定;设计基于视觉的自适应蒙特卡洛算法,获取特征信息,并用词袋模型进行分类,使用激光雷达构建2D栅格地图,采用特征点匹配估计位姿,实现AGV自我精确定位。结果仿真实验结果表明,本文所提算法与传统自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)算法相比,可使机器人更加快速地收敛到精度较高的位姿,具有更好的定位性能。结论基于视觉的AMCL算法设计,实现了导向辊生产车间机器人的高精度定位,优化了作业流程,提高了生产线系统智能化运行水平,可为其他场景定位应用提供参考。