By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ...By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.展开更多
A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues ...A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues in conventional back propagation algorithm i.e. slow convergence rate, longer training time, hard to achieve global minima etc. , different methods have been used including the introduction of dynamic learning rate and dynamic momentum coefficient etc. With the passage of time different techniques has been used to improve the dynamicity of these coefficients. The meth- od applied in this paper improves the effect of learning coefficient η by using a new way to modify the value dynamically during learning process. The experimental results show that this helps in im- proving the efficiency overall both in visual effect and quality analysis.展开更多
A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed th...A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed that by using this method the value of mean square error (MSE) decreases significantly. In addition, this method also gives good visual results when it is applied in image resto- ration problem. This method is also useful to tackle the inherited drawback of falling into local mini- ma by reducing its effect on overall system by bifurcating the learning locally different for different grey scale values. The performance of this algorithm has been studied in detail with different combi- nations of weights. In short, this algorithm provides much better results especially when compared with the simple back propagation algorithm with any further enhancements and without going for hy- brid solutions.展开更多
文摘By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.
基金Supported by the National Natural Science Foundation of China (60772066)Higher Education Commission of Pakistan
文摘A new method of artificial intelligence based on a new improved back propagation neural network (BPNN) algorithm is partially applied in the problem of image restoration. In order to over- come the inherited issues in conventional back propagation algorithm i.e. slow convergence rate, longer training time, hard to achieve global minima etc. , different methods have been used including the introduction of dynamic learning rate and dynamic momentum coefficient etc. With the passage of time different techniques has been used to improve the dynamicity of these coefficients. The meth- od applied in this paper improves the effect of learning coefficient η by using a new way to modify the value dynamically during learning process. The experimental results show that this helps in im- proving the efficiency overall both in visual effect and quality analysis.
基金Supported by the National Natural Science Foundation of China(60772066)Higher Education Commission,Pakistan
文摘A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed that by using this method the value of mean square error (MSE) decreases significantly. In addition, this method also gives good visual results when it is applied in image resto- ration problem. This method is also useful to tackle the inherited drawback of falling into local mini- ma by reducing its effect on overall system by bifurcating the learning locally different for different grey scale values. The performance of this algorithm has been studied in detail with different combi- nations of weights. In short, this algorithm provides much better results especially when compared with the simple back propagation algorithm with any further enhancements and without going for hy- brid solutions.