With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
We propose a projection-type algorithm for generalized mixed variational in- equality problem in Euclidean space Rn. We establish the convergence theorem for the pro- posed algorithm, provided the multi-valued mapping...We propose a projection-type algorithm for generalized mixed variational in- equality problem in Euclidean space Rn. We establish the convergence theorem for the pro- posed algorithm, provided the multi-valued mapping is continuous and f-pseudomonotone with nonempty compact convex values on dom(f), where f : Rn --RU{+∞} is a proper func- tion. The algorithm presented in this paper generalize and improve some known algorithms in literatures. Preliminary computational experience is also reported.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金supported by the Scientific Research Foundation of Sichuan Normal University(20151602)National Natural Science Foundation of China(10671135,61179033)and the Key Project of Chinese Ministry of Education(212147)
文摘We propose a projection-type algorithm for generalized mixed variational in- equality problem in Euclidean space Rn. We establish the convergence theorem for the pro- posed algorithm, provided the multi-valued mapping is continuous and f-pseudomonotone with nonempty compact convex values on dom(f), where f : Rn --RU{+∞} is a proper func- tion. The algorithm presented in this paper generalize and improve some known algorithms in literatures. Preliminary computational experience is also reported.