期刊文献+
共找到1,327篇文章
< 1 2 67 >
每页显示 20 50 100
基于PSO-BP神经网络的海上饲料称重研究
1
作者 林华建 刘孔瑞 +2 位作者 杨斌 俞文胜 潘柏霖 《渔业现代化》 北大核心 2025年第4期63-70,共8页
为了提高下料装置在海上摇摆、颠簸工况下的饲料称重精度,提出了基于PSO-BP神经网络的称重误差修正算法。基于传感技术,建立配置有称重传感器和姿态传感器的密闭式试验装置,在近海养殖场测取不同配重下0~20°倾斜范围内的饲料称重... 为了提高下料装置在海上摇摆、颠簸工况下的饲料称重精度,提出了基于PSO-BP神经网络的称重误差修正算法。基于传感技术,建立配置有称重传感器和姿态传感器的密闭式试验装置,在近海养殖场测取不同配重下0~20°倾斜范围内的饲料称重与姿态数据,在确定修正系数后,引入BP神经网络算法获取称重预测值。结果显示:真实质量分别为8.06 kg与12.40 kg的测试样本中,相较于直接测量法,BP神经网络算法修正后的称重数据的最大相对误差分别减小4.32%与4.36%;相较于BP神经网络算法,PSO-BP神经网络算法修正后的称重数据,其最大相对误差分别降低0.39%与0.33%。研究表明,对于海上网箱养殖业的饲料称重,运用PSO-BP神经网络算法进行误差修正具有更高的精度。 展开更多
关键词 饲料称重 网箱养殖 bp神经网络 粒子群 误差修正
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
2
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
基于改进灰狼优化BP网络的城中村火灾预测
3
作者 吕淑然 田江雪 党鑫宇 《中国安全科学学报》 北大核心 2025年第8期196-204,共9页
为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经... 为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经网络的城中村火灾风险预测模型(IGWO-BP),结合城中村火灾风险因素的复杂性和特殊性制定指标体系,预测火灾风险,并进行实例验证。结果表明:相较于传统GWO、粒子群算法(PSO)、长城算法(GWCA),IGWO在全局搜索能力、收敛速度和稳定性等方面均有显著提升,IGWO-BP模型可通过处理城中村火灾风险指标,实现对火灾风险的预测。 展开更多
关键词 改进灰狼优化算法(IGWO) 反向传播(bp)神经网络 城中村火灾 风险预测 变异算子 高维函数
在线阅读 下载PDF
贝叶斯正则化优化BP神经网络估算SOH 被引量:1
4
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(SOH) 贝叶斯正则化算法 反向传播(bp)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于PSO-GA-BP优化算法的煤焦油产率预测研究
5
作者 詹润 韩锋 +3 位作者 张文永 刘英明 刘桂建 黄毅 《煤炭工程》 北大核心 2025年第8期178-187,共10页
为了提高焦油产率预测的精度和效率,鉴于煤岩煤质指标之间的多元非线性复杂关系,通过筛选两淮煤田以往煤岩煤质指标较为齐全的129组钻孔数据,利用Pearson相关系数法相关性分析确定了氢碳比、氢元素、镜质组、挥发分与焦油产率相关性最强... 为了提高焦油产率预测的精度和效率,鉴于煤岩煤质指标之间的多元非线性复杂关系,通过筛选两淮煤田以往煤岩煤质指标较为齐全的129组钻孔数据,利用Pearson相关系数法相关性分析确定了氢碳比、氢元素、镜质组、挥发分与焦油产率相关性最强,氧化钙、氧化镁、氧化铁、氧化硅、氧化铝、固定碳与焦油产率相关性中等,其他指标相关性较弱,并将影响焦油产率的特征参数划分为“强、强+中、强+中+弱”三种指标参数组合,建立了基于PSO-GA-BP的组合优化算法预测模型,通过对不同参数组合进行机器学习训练,对比分析了不同预测模型实际应用效果。结果表明:“强+中”特征参数组合样本数据在训练过程中,性能和训练状态较优,其最佳适应度最大,绝对系数R^(2)、均方根误差RMSE、平均绝对误差MAE均好于其他特征参数组合。通过与BP、GA-BP、PSO-BP算法模型进行对比,PSO-GA-BP组合优化算法模型误差最小,在提高焦油产率预测精度和数据拟合效果方面更具优势。将本次利用钻孔建立的PSO-GA-BP组合算法模型应用到巷道采集扩展样品焦油产率预测中,预测模型表现出较好的泛化能力。建立完整和全面的煤岩煤质数据库,利用先进智能算法,可进一步提高模型学习能力和预测效果。 展开更多
关键词 PSO-GA-bp组合算法 焦油产率 特征参数 煤岩煤质 预测模型 误差
在线阅读 下载PDF
基于ISSA-BP的地震灾害救援装备需求预测
6
作者 刘浩 石福丽 +2 位作者 罗雷 李文博 李文渊 《中国安全科学学报》 北大核心 2025年第S1期246-251,共6页
为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行... 为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行策略的改进麻雀搜索算法(ISSA)的预测模型,结合受灾人数与救援装备间的数量关系,间接预测地震救援装备需求量,并以“12·18积石山地震”救援实例进行验证。结果表明:ISSA-BP模型在预测受灾人数方面精度更高,可有效预测震后受灾人数,从而推算所需救援装备数量。“12·18积石山地震”救援实例验证了模型对震后救援装备需求预测的实用性。 展开更多
关键词 改进麻雀优化算法(ISSA) 反向传播(bp) 地震灾害 救援装备 需求预测
在线阅读 下载PDF
基于SSA-GA-BP神经网络的激光三角法测量误差研究
7
作者 肖清浩 董祉序 +2 位作者 孙兴伟 杨赫然 刘寅 《仪表技术与传感器》 北大核心 2025年第8期19-24,共6页
针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻... 针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻雀搜索算法(SSA)对GA-BP网络实施二次优化,构建出SSA-GA-BP误差预测模型。通过设计误差试验采集数据,并采用该模型对数据进行训练与测试。为评估模型性能,对比不同算法的输出误差,并将决定系数、均方根误差和平均绝对误差作为评估标准。结果显示,SSA-GA-BP算法预测精度较高,与实验值拟合效果良好。相较于其他模型,SSA-GA-BP模型具有更高的预测精度和更强的泛化能力,为后续误差补偿提供了方法。 展开更多
关键词 激光三角法 误差预测 遗传算法 麻雀搜索算法 bp神经网络
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
8
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于BOA-BP神经网络的四旋翼飞行器路径优化 被引量:1
9
作者 王舒玮 李嘉 +1 位作者 冯健 岳彩宾 《现代防御技术》 北大核心 2025年第3期74-81,共8页
针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了... 针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。 展开更多
关键词 四旋翼 飞行器 蝴蝶优化算法 bp神经网络 路径优化 训练样本 误差处理
在线阅读 下载PDF
基于PSO-BP神经网络的SiC MOSFET模块寿命预测方法研究与实现
10
作者 毛明波 孟昭亮 +1 位作者 高勇 杨媛 《电源学报》 北大核心 2025年第1期229-235,258,共8页
针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-... 针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-back propagation)神经网络的SiC MOSFET模块寿命预测数字化实现方法。首先,利用导通压降平台提取Si CMOSFET的导通压降作为温敏电参数,建立基于实验数据的结温预测方案;其次,利用功率循环加速老化实验平台,提取老化特征数据,建立基于PSO-BP神经网络的寿命预测方案;然后,将结温预测方案与寿命预测方案移植到可编程阵列逻辑中,实现SiC MOSFET寿命预测数字化;最后,设计了验证电路。实验表明,数字化显示的结温与真实结温的误差为4.73℃,与真实寿命次数的误差百分比为4.1%,证明所提寿命预测方法得到了数字化实现,并能够准确预测SiC MOSFET模块的寿命次数。 展开更多
关键词 SiC MOSFET 粒子群优化-反向传播 寿命预测 数字化
在线阅读 下载PDF
基于改进NNA和BP神经网络模型的深基坑沉降预测
11
作者 王仁志 张伟国 +3 位作者 寇苗苗 刘飞 王金涛 张拥军 《科学技术与工程》 北大核心 2025年第24期10416-10425,共10页
为更精准预测基坑开挖卸荷引起的周边地表沉降,通过改进神经网络算法(neural network algorithm, NNA),提出一种具有信息反馈和反向学习机制的神经网络优化算法(neural network algorithm with feedback mechanism and reverse learning... 为更精准预测基坑开挖卸荷引起的周边地表沉降,通过改进神经网络算法(neural network algorithm, NNA),提出一种具有信息反馈和反向学习机制的神经网络优化算法(neural network algorithm with feedback mechanism and reverse learning, FBRLNNA),并结合反向传播(back propagation, BP)神经网络构建地表沉降预测模型,将提出的沉降预测模型在青岛15号线地铁工程基坑中进行应用与验证。基于18种基准函数比较FBRLNNA与9种竞争优化算法的表现,仿真试验表明,FBRLNNA在80%的基础基准函数上均表现出更优的性能。对比分析FBRLNNA-BP模型及其他4种模型的基坑沉降预测结果,FBRLNNA-BP模型的均方误差(mean squared error, MSE)、平均绝对误差(mean absolute error, MAE)、均方根误差(root mean square error, RMSE)及决定系数(R^(2))均最佳,沉降预测结果误差小于5%,表明该预测模型具有更好的沉降预测精度。研究成果可为基坑开挖引发的地表沉降预测提供了新的方法和参考。 展开更多
关键词 具有信息反馈和反向学习机制的神经网络优化算法(FBRLNNA) 反向传播(bp)神经网络 FBRLNNA-bp模型 基坑开挖 沉降预测
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
12
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于GA-BP的三坐标钻高速电主轴热误差建模研究
13
作者 梁林 张栋 +1 位作者 白永康 周浩光 《机床与液压》 北大核心 2025年第3期94-100,共7页
针对三坐标钻的高速电主轴非均匀温度场,提出一种基于遗传算法(GA)的BP神经网络建模方法。结合模糊聚类法和灰色关联分析法对三坐标钻高速电主轴的温度测点组合进行测量。通过分析按时间排列的电主轴温度测点序列和电主轴热误差序列,确... 针对三坐标钻的高速电主轴非均匀温度场,提出一种基于遗传算法(GA)的BP神经网络建模方法。结合模糊聚类法和灰色关联分析法对三坐标钻高速电主轴的温度测点组合进行测量。通过分析按时间排列的电主轴温度测点序列和电主轴热误差序列,确定神经网络的输入和输出参数,从而构建GA-BP高速电主轴热误差模型;在不同的高速电主轴转速下,将GA-BP神经网络模型、多元线性回归模型以及BP神经网络模型进行对比。结果表明:GA-BP神经网络热误差模型的预测精度优于多元线性回归法和BP神经网络建模方法,GA-BP神经网络模型在10000 r/min转速下的最大均方误差为0.0673μm,在12000 r/min转速下的最大残差为1.98μm。GA-BP热误差预测模型相较其他模型具有鲁棒性强、精度高的优点,该模型可以有效提高三坐标钻的加工质量。 展开更多
关键词 高速电主轴 GA-bp神经网络 热误差建模
在线阅读 下载PDF
基于IAVOA-BPNN的XY工作台定位误差分析
14
作者 段金池 孟新宇 《组合机床与自动化加工技术》 北大核心 2025年第10期21-26,31,共7页
针对反向传播神经网络(back propagation neural network,BPNN)受随机初始偏置权重影响,导致XY工作台定位误差模型预测精度不高,提出一种改进的非洲秃鹫优化算法对BPNN初值寻优。为完善非洲秃鹫优化算法寻优能力,采用最优拉丁超立方分... 针对反向传播神经网络(back propagation neural network,BPNN)受随机初始偏置权重影响,导致XY工作台定位误差模型预测精度不高,提出一种改进的非洲秃鹫优化算法对BPNN初值寻优。为完善非洲秃鹫优化算法寻优能力,采用最优拉丁超立方分布、非线性动态调整寻优分配、适应度-距离策略和复合对立学习策略对其进行改进,通过仿真验证改进算法的性能。并用实验数据对误差模型进行预测分析,结果显示,相比于单一BPNN和原始算法优化,改进后的方法预测准确度分别提高了71.13%和27.42%,综合表明,改进的非洲秃鹫优化算法显著提高了BPNN在定位误差预测分析中的准确性。 展开更多
关键词 反向传播神经网络 改进非洲秃鹫算法 XY工作台 定位误差
在线阅读 下载PDF
基于KNN-BP神经网络车辆驻留时间预测立体车库RGV待命位策略
15
作者 后国栋 李建国 《科学技术与工程》 北大核心 2025年第24期10478-10486,共9页
平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighb... 平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighbor, KNN)-BP神经网络预测模型,以是否为工作日、工作日特殊时段(如早高峰、晚高峰),气温,降水4个方面作为特征向量,采用二进制集合转换构建各特征向量集,通过KNN对异常数据进行分组,提高BP神经网络预测精度,并基于预测时间建立出库概率分布,设定区域优先级参数以及RGV(rail guided vehicle)待命位策略。编写仿真程序,以西安小寨某商用立体车库运行数据进行验证,仿真结果表明:KNN-BP神经网络预测模型R^(2)较传统BP神经网络提高了20.23%,设计待命位策略下较无待命位策略顾客平均等待时间减小35.82%,RGV平均服务时间降低39.51%,RGV运行能耗降低38.32%;较文献引用策略顾客平均等待时间减小14.18%,RGV平均服务时间降低13.29%,RGV运行能耗降低20.89%。研究成果为提高立体车库车运行效率提供参考。 展开更多
关键词 交通工程 立体车库 待命位 K-近邻算法(KNN)-反向传播(bp)神经网络 RGV
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
16
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
基于BP神经网络的备件满足率与利用率预测方法
17
作者 王欣汝 唐少康 杨建军 《现代防御技术》 北大核心 2025年第2期175-182,共8页
针对备件满足率与利用率的计算、预测问题,提出了一种基于BP神经网络的预测方法。依据备件配置方案与装备保障效能之间存在的影响关系,设计神经网络模型拟合备件配置方案与其对应满足率、利用率之间的映射关系,实现备件配置方案设计合... 针对备件满足率与利用率的计算、预测问题,提出了一种基于BP神经网络的预测方法。依据备件配置方案与装备保障效能之间存在的影响关系,设计神经网络模型拟合备件配置方案与其对应满足率、利用率之间的映射关系,实现备件配置方案设计合理性的评估。以3类不同组成结构的装备为例,设计对应的备件满足率与利用率神经网络预测模型,并通过数据样本进行训练,实现了快速、高精度的备件满足率与利用率的预测。算法耗时短且平均误差与均方误差均小于0.05%,证明了所提方法的有效性。 展开更多
关键词 备件配置方案 bp神经网络 保障效能 备件满足率 备件利用率
在线阅读 下载PDF
基于改进BP神经网络的火车防吊起快速检测方法
18
作者 姜军 宓为建 《中国工程机械学报》 北大核心 2025年第2期361-365,共5页
铁路集装箱堆场对于火车平板装卸作业,由于传统检测方法检测精度或检测速度不能满足要求,鲜有成熟的智能防吊起解决方案。本文提出一种基于改进反向传播(BP)神经网络的火车防吊起快速检测方法,通过获取吊具4个锁头的称重数据,建立基于B... 铁路集装箱堆场对于火车平板装卸作业,由于传统检测方法检测精度或检测速度不能满足要求,鲜有成熟的智能防吊起解决方案。本文提出一种基于改进反向传播(BP)神经网络的火车防吊起快速检测方法,通过获取吊具4个锁头的称重数据,建立基于BP神经网络的平板吊起检测模型,在权值调整时加入动量因子和自适应调节学习率以优化模型性能。在实际作业中测试,本方法具有较高的检出率和快速的检测速度,可为轨道吊自动化火车作业提供智能安全防护。 展开更多
关键词 集装箱火车 平板鹰钩(F-TR)锁防吊起 反向传播(bp)神经网络 动量因子 自适应学习
在线阅读 下载PDF
基于IPSO⁃BP的消防通信指挥系统效能评价
19
作者 于振江 《中国安全科学学报》 北大核心 2025年第9期1-7,共7页
为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过... 为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过改进粒子群优化(IPSO)算法优化参数,提出基于IPSO-BP的系统效能评价方法;采用专家打分与层次分析法(AHP)结合的方式获取样本数据,经主成分分析(PCA)方法降维后,分别基于BP神经网络、PSO-BP神经网络、IPSO-BP神经网络这3个模型开展仿真对比。结果表明:IPSO-BP神经网络模型的收敛速度最快,其均方误差相比于BP神经网络模型降低了75.71%,相较于PSO-BP神经网络模型降低了45.96%,为三者中的最小值;IPSO-BP模型能够合理精准地评价支队级消防通信指挥系统效能,具有一定的普适性。 展开更多
关键词 消防通信指挥系统 效能评价 反向传播(bp)神经网络 改进粒子群优化(IPSO) 指标体系
在线阅读 下载PDF
基于GRU-BP算法的高精度动态物流称重系统 被引量:2
20
作者 康杰 《机电工程》 CAS 北大核心 2024年第6期1127-1134,共8页
针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,... 针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,并将加速度信号作为模型输入信号,进行了特征补偿;然后,基于深度学习算法,提出了一种改进的门控循环单元模型,在该模型采样区间内将压力与振动改写为时序化信号,并将其共同输入门控循环单元(GRU)模型;最后,对GRU模型进行了改进,对其结构输出了层堆叠误差反向传播神经网络(BP),有效加强了模型的非线性映射能力。研究结果表明:在各类传动速度及测试货物下,该模型的最大测量误差相对于同类型深度学习模型长短期记忆(LSTM)神经网络、循环神经网络(RNN)时序模型及传统数值平均模型的误差,依次降低了16.14%、27.14%、76%,可用于各类称重系统。 展开更多
关键词 深度学习 动态测量系统 门控循环单元 反向传播神经网络 振动补偿 长短期记忆神经网络 循环神经网络
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部