期刊文献+
共找到1,185篇文章
< 1 2 60 >
每页显示 20 50 100
AHP-CRITIC结合BP-ANN的归志方提取工艺优化研究
1
作者 李月婷 魏祖英 +7 位作者 王腾腾 程超 谭颖 许一帆 霍滢滢 高家乐 刘洁 肖红斌 《分析测试学报》 北大核心 2025年第11期2256-2264,共9页
基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出... 基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出膏率的权重系数分别为0.1907、0.2175、0.2341、0.0894、0.1195、0.0875、0.0613,最佳提取工艺为加10倍量溶剂、每次2 h、提取3次。在此基础上,基于BPANN仿真模型预测与验证了该最佳工艺。进一步将AHP-CRITIC与BP-ANN进行联合分析,结果表明10倍量溶剂、每次1 h、提取2次与上述最佳工艺参数无统计学差异,即在此工艺下可以保证提取效果并节约能源,为后续归志方大生产提取工艺选择提供了参考。该文建立的AHP-CRITIC结合BP-ANN的综合试验方法为中药复方提取工艺的现代化研究提供了可靠的方法支撑。 展开更多
关键词 归志方 层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC) 反向传播人工神经网络(bp-ann) 提取工艺 正交试验设计
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
2
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:3
3
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination bp artificial neural network Damage probability Initiation delay
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
4
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ann) cuckoo search(CS) algorithm
在线阅读 下载PDF
Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools 被引量:4
5
作者 Nam?k KILI? Blent EKICI Selim HARTOMACIOG LU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期110-122,共13页
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi... Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy. 展开更多
关键词 人工神经网络 有限元法 穿透深度 性能测定 高速冲击 有限元模拟 FEM模拟 工具
在线阅读 下载PDF
Artificial Neural Network Applied to Quality Diagnosis
6
作者 Yang Xu(Shandong Architectural and Civil Engineering Institute, Jinan 250014, P. R. ChinaWang Xingyuan(Shandong University of Technology, Jinan 250061, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第2期73-80,共8页
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ... In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system. 展开更多
关键词 artificial neural network (ann) Quality diagnosis Pattern recognition Expert system.
在线阅读 下载PDF
The Application of Artificial Neural Network in Assessing Chinese Mobile Internet Service
7
作者 Zhu Jiachuan 《学术界》 CSSCI 北大核心 2014年第6期282-288,共7页
This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore ... This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore the three layers construct of the artificial neural network( ANN) theory is applied to address the problem. The final research model contains MIS features including personalization,localization,reachability,connectivity,convenience and ubiquity as the input layer variables,perceived MIS quality and MIS satisfaction as the hidden layer variables and reuse intention as the output layer variable. MIS risk is identified as the mediating variable. Theoretically,the framework is robust and reveals the mechanism of how customers evaluate a certain mobile Internet service. Practically,the model based on ANN should shed some light on how to understand and improve customer perceived mobile Internet service for both MIS giants and new comers. 展开更多
关键词 人工神经网络 互联网服务 质量管理信息系统 移动 中国 应用 评估 MIS
在线阅读 下载PDF
应用人工智能方法计算致密气藏可采储量——以BP神经网络为例
8
作者 米乃哲 乔向阳 +3 位作者 李旭芬 吕远 许伟 谢小飞 《大庆石油地质与开发》 北大核心 2025年第3期70-76,共7页
针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提... 针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提供产品、服务、应用,将人工智能具有的解决数据模糊问题、高效协调能力、强学习能力和非线性能力的优势用于可采储量计算。将资料完整准确气井计算可采储量作为学习样本;利用气藏地质和动态研究成果初选计算参数,灰色关联遴选最终计算参数;通过人工智能训练学习建立最终参数与可采储量间关系,应用建立的关系完成其他气井可采储量的计算。应用于延安气田Y50井区,单井验证误差范围-1.88%~4.80%,多井累计误差为1.13%。实践表明,应用人工智能方法计算可采储量可以满足工程计算需要,可大幅度提高计算效率,节约人工成本,降低测试费用,无测试资料和资料不完整气井也可完成可采储量的计算。 展开更多
关键词 致密气藏 可采储量 人工智能 bp神经网络
在线阅读 下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:4
9
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 bp-ann RBF-ann
在线阅读 下载PDF
基于ABC-BP神经网络的飞机防滑刹车系统故障诊断
10
作者 王强 娄华语 +4 位作者 周国强 吴伟 马长胜 邱荣贤 王良模 《江苏大学学报(自然科学版)》 北大核心 2025年第6期699-704,共6页
针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装... 针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装置模型等组成的飞机防滑刹车系统仿真模型;确定电液伺服阀和轮速传感器典型故障模式,建立故障注入模块;通过轮速传感器和电液伺服阀的典型故障仿真模拟,得到故障数据样本.采用滑动窗口裁剪的方法对样本进行数据增强,建立故障数据集;采用优化前后的BP神经网络进行飞机防滑刹车系统的故障诊断.结果表明:采用ABC算法对BP神经网络优化后的系统平均故障诊断准确率为95.4%(优化前为92.7%),湿跑道传感器故障诊断的准确率为83.9%(优化前为74.5%),可见通过优化有效提升了飞机防滑刹车系统故障诊断准确率. 展开更多
关键词 飞机防滑刹车系统 故障诊断 故障注入 bp神经网络 数据增强 人工蜂群算法
在线阅读 下载PDF
基于BBD和RSM/ANN-Pareto建模的微细粒锡石浮选试验优化
11
作者 张胜东 赵瑜 +2 位作者 王晓 童雄 谢贤 《中国有色金属学报》 北大核心 2025年第9期3216-3235,共20页
微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(R... 微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(RSM)和人工神经网络-帕累托优化算法(ANNPareto)实现建模优化。结果表明:ANN-Pareto在拟合精度和预测能力方面均显著优于RSM,RSM则在规律揭示方面更具优势。在闭路试验中,RSM优化取得锡品位6.81%、锡回收率69.06%的指标,ANNPareto优化取得锡品位7.04%、锡回收率73.12%的指标。相较于单因素条件试验,RSM和ANN-Pareto优化在保持锡品位基本不变的情况下分别获得2.26和6.34个百分点的锡回收率提升。BBD/RSM/ANN-Pareto耦合模型方法能有效整合试验设计、交互作用揭示与指标优化,可在微细粒锡石浮选优化中发挥显著作用。 展开更多
关键词 微细粒锡石浮选 BOX-BEHNKEN设计 响应曲面法 人工神经网络 PARETO优化
在线阅读 下载PDF
人工蜂蚁算法结合BP神经网络的PC刚构桥优化
12
作者 王田虎 徐栋 《同济大学学报(自然科学版)》 北大核心 2025年第11期1648-1655,共8页
为了解决现有预应力混凝土(PC)连续刚构桥优化易陷入局部最优且难以系统地实现结构尺寸和钢束优化的问题,提出了一种人工蜂蚁(ABC)算法结合BP神经网络的方法,启发式算法避免了局部最优,目标函数兼顾结构造价和受力性能,以满足规范和构... 为了解决现有预应力混凝土(PC)连续刚构桥优化易陷入局部最优且难以系统地实现结构尺寸和钢束优化的问题,提出了一种人工蜂蚁(ABC)算法结合BP神经网络的方法,启发式算法避免了局部最优,目标函数兼顾结构造价和受力性能,以满足规范和构造要求为约束条件,系统地实现PC连续刚构桥结构尺寸和钢束的优化。依托一座跨径布置为(95+173+95)m的连续刚构桥,通过比较九种算法与神经网络结合的优化效果和效率,突显了ABC算法的优势。最优方案不仅满足规范要求,且相较于原桥,目标值降低了35.8%,钢束用量减少了46.3%,应力安全度方差降低了60.4%,目标预测值与实际值仅相差2.1%,优化和预测效果显著。此外,对参数进行了重要性和敏感性分析,探索了不同参数对于目标值的影响。 展开更多
关键词 结构优化 预应力混凝土 连续刚构桥 人工蜂蚁算法 bp神经网络
在线阅读 下载PDF
BP-ANN在荒漠草地高光谱分类研究中的应用 被引量:15
13
作者 钱育蓉 贾振红 +2 位作者 于炯 杨峰 段文亮 《计算机工程与应用》 CSCD 北大核心 2011年第12期225-228,共4页
利用高分辨率光谱仪在实地测得的光谱数据来识别新疆阜康地区的7种典型荒漠草种,对原始高光谱数据作预处理(微分和平滑),选取典型荒漠植被的光谱特征(红边、绿峰、红谷、RVI等)作为输入数据,植被类型作为输出数据,构建基于BP神... 利用高分辨率光谱仪在实地测得的光谱数据来识别新疆阜康地区的7种典型荒漠草种,对原始高光谱数据作预处理(微分和平滑),选取典型荒漠植被的光谱特征(红边、绿峰、红谷、RVI等)作为输入数据,植被类型作为输出数据,构建基于BP神经网络模型的典型荒漠草地分类器,进行了三组基于高光谱特征的草地类型分类实验,结果表明:(1)红边特征较其余吸收特征更能获得精确的分类结果;(2)波段550~790nnl间的窄波段光谱分类间隔中,20nm优于10nm的间隔;(3)草地分类器中BP网络模型的输入层、隐藏层神经元个数与BP网络训练时间、精度具有复杂的耦合关系,不可一概而论。 展开更多
关键词 高光谱特征提取 反向反馈(bp)人工神经网络 红边特征 窄波段光谱
在线阅读 下载PDF
LM-BP-ANN算法应用于分光光度法同时测定治感冒药的4种组分 被引量:1
14
作者 张立庆 程志刚 +1 位作者 李菊清 余杞松 《理化检验(化学分册)》 CAS CSCD 北大核心 2007年第11期906-909,共4页
将LM-BP-ANN算法应用于分光光度法同时测定治感冒药中4个组分,即对乙酰氨基酚(ACET)、愈创木酚甘油醚(GUAI)、咖啡因(CAFF)及扑尔敏(CHLO)。应用此算法解决上述4组分吸收光谱相互重叠的问题,对分光光度测定的最优条件和网络参数的选择... 将LM-BP-ANN算法应用于分光光度法同时测定治感冒药中4个组分,即对乙酰氨基酚(ACET)、愈创木酚甘油醚(GUAI)、咖啡因(CAFF)及扑尔敏(CHLO)。应用此算法解决上述4组分吸收光谱相互重叠的问题,对分光光度测定的最优条件和网络参数的选择进行了试验和确定。结果表明:此算法的特点在于训练速度快,结果预报准确度高。分析了感冒咳嗽糖浆,可不经分离直接同时测定上述4组分,回收率试验的结果在99.0%~110.4%之间。 展开更多
关键词 分光光度法 LM-bp人工神经网络 对乙酰氨基酚 愈创木酚甘油醚 咖啡因 扑尔敏 治感冒药
在线阅读 下载PDF
基于BP-ANN的热电偶信息处理方法 被引量:5
15
作者 穆玲玲 《传感器技术》 CSCD 北大核心 2003年第6期30-32,共3页
为了提高传感器的准确度,提出一种基于BP网络和递推预报误差算法对热电偶进行信息处理的方法,经过仿真试验证明该方法可以提高传感器在较大范围内的测量准确度。该方法用软件容易实现,可以很方便地应用到其它传感器中。
关键词 多层前馈神经网络 递推预报误差 传感器 信息处理 热电偶
在线阅读 下载PDF
BP神经网络预测冲击强化45钢的中温热稳定性 被引量:1
16
作者 姬帅 张佳乐 王海丽 《热加工工艺》 北大核心 2024年第23期159-164,共6页
室温下采用自由落体式对正火态45钢进行冲击强化,对冲击强化正火态45钢进行中温时效处理,分别加热至450、550、650℃,每组温度均保温10、20、30、40 min,同时对各组试样进行显微硬度测试,并对加热至650℃的4种试样进行显微组织观察;以... 室温下采用自由落体式对正火态45钢进行冲击强化,对冲击强化正火态45钢进行中温时效处理,分别加热至450、550、650℃,每组温度均保温10、20、30、40 min,同时对各组试样进行显微硬度测试,并对加热至650℃的4种试样进行显微组织观察;以试样的实际状态参量作为学习样本对3层BP神经网络进行训练。结果表明:BPANN能够对冲击强化正火态45钢的中温热稳定性进行预测,且误差可以控制在3%~6%;BPANN的预测值均大于实测值,但是预测值的变化趋势与实测值的变化趋势一致,网络的预测精度可以通过提高误差函数的收敛速率来得到提高。通过对650℃试样显微组织的观察,可以判定网络的输入层涉及的相关内容能让BPANN的预测结果反映出材料的真实状态。本研究可以降低实验成本、减少实验数量,有助于对冲击强化正火态45钢在其他加热温度下的热稳定性进行预测。 展开更多
关键词 人工神经网络 bp算法 冲击强化 正火态45钢 中温热稳定性
在线阅读 下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
17
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (anns) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
在线阅读 下载PDF
Prediction of Partial Ring Current Index Using LSTM Neural Network 被引量:1
18
作者 LI Hui WANG Runze WANG Chi 《空间科学学报》 CAS CSCD 北大核心 2022年第5期873-883,共11页
The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the Su... The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms. 展开更多
关键词 Geomagnetic storm Partial Ring Current Index(PRCI) artificial neural network(ann)
在线阅读 下载PDF
基于近红外光谱技术与BP-ANN算法的豆粕品质快速检测 被引量:3
19
作者 周新奇 杨伟伟 +4 位作者 房兆华 桑强 叶华俊 张学锋 陈智锋 《粮油食品科技》 北大核心 2012年第2期27-30,共4页
应用近红外漫反射光谱技术结合误差反向传递人工神经网络(BP-ANN)算法,建立豆粕品质(包括水分、粗蛋白、残油)的定量分析模型。将豆粕漫反射吸收光谱数据进行SNV、DT、SG求导、SG平滑和均值中心化处理,然后采用偏最小二乘方法(PLS)降维... 应用近红外漫反射光谱技术结合误差反向传递人工神经网络(BP-ANN)算法,建立豆粕品质(包括水分、粗蛋白、残油)的定量分析模型。将豆粕漫反射吸收光谱数据进行SNV、DT、SG求导、SG平滑和均值中心化处理,然后采用偏最小二乘方法(PLS)降维获取主成分,并优化选择合适的隐含层节点数、隐含层和输出层转化函数,建立校正模型,并用验证样品对校正模型进行验证。结果显示,BP-ANN法建立的水分、粗蛋白和残油的预测相关系数(R)分别为0.981、0.988、0.982,预测标准偏差(SEP)分别为0.120、0.216、0.036,均优于PLS建模方法结果,且满足传统分析方法的重复性要求,表明BP-ANN方法可用于生产过程豆粕品质的快速监控。 展开更多
关键词 神经网络 近红外光谱 豆粕
在线阅读 下载PDF
基于Sine-SSA-BP人工神经网络的腐蚀速率预测研究
20
作者 李昭毅 孙虎元 +1 位作者 蔡振宇 孙立娟 《海洋科学》 CAS CSCD 北大核心 2024年第8期17-28,共12页
海洋工程用钢广泛应用于海洋资源开发;然而,在海洋环境中,由于海洋环境复杂,钢的腐蚀速度大幅加快。为了评估其使用寿命,需要准确地预测钢的腐蚀速率。挂片实验法费时费力,经验模型预测虽然可以快速预测,但因海洋中影响腐蚀的因素较多,... 海洋工程用钢广泛应用于海洋资源开发;然而,在海洋环境中,由于海洋环境复杂,钢的腐蚀速度大幅加快。为了评估其使用寿命,需要准确地预测钢的腐蚀速率。挂片实验法费时费力,经验模型预测虽然可以快速预测,但因海洋中影响腐蚀的因素较多,准确度较差。本文介绍了一种机器学习方法,即反向传播(BP)神经网络金属腐蚀速率预测模型。本研究创新性地将Sine混沌映射与麻雀搜索优化算法(SSA)引入腐蚀速率预测模型中,并利用2022年采集到的海洋环境要素和腐蚀速率数据导入模型进行训练预测。结果表明,SSA-BP和Sine-SSA-BP神经网络金属腐蚀速率预测模型的误差远低于BP神经网络腐蚀速率预测模型。经过充分的训练和学习,当预测样本数量由5至30逐渐增加时,Sine-SSA-BP预测模型的平均MAPE值为3.5002%,SSA-BP模型的平均MAPE值为6.0900%。 展开更多
关键词 海洋腐蚀 bp人工神经网络 麻雀搜索优化算法 预测精度
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部