提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的...提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。展开更多
为提高遥感影像检索的精度,提出一种基于快速查找密度峰值聚类(Fast Search and Find of Density Peaks,FSFDP)的改进视觉词袋(Bag of Visual word,BoV)模型,该方法充分利用FSFDP聚类算法分类精度高和聚类参数易于选择等优点,增强BoV模...为提高遥感影像检索的精度,提出一种基于快速查找密度峰值聚类(Fast Search and Find of Density Peaks,FSFDP)的改进视觉词袋(Bag of Visual word,BoV)模型,该方法充分利用FSFDP聚类算法分类精度高和聚类参数易于选择等优点,增强BoV模型特征量化的稳定性和可靠性。实验表明,与经典BoV模型相比,FSFDP-BoV模型能够得到更高的检索精度。展开更多
在目标检索领域,当前主流的解决方案是视觉词典法(Bag of Visual Words,BoVW),然而,传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题。针对以上问题,该文提出了一种基于随机化视觉词典组和查询扩展的目标检...在目标检索领域,当前主流的解决方案是视觉词典法(Bag of Visual Words,BoVW),然而,传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题。针对以上问题,该文提出了一种基于随机化视觉词典组和查询扩展的目标检索方法。首先,该方法采用精确欧氏位置敏感哈希(Exact Euclidean LocalitySensitive Hashing,E2LSH)对训练图像库的局部特征点进行聚类,生成一组支持动态扩充的随机化视觉词典组;然后,基于这组词典构建视觉词汇分布直方图和索引文件;最后,引入一种查询扩展策略完成目标检索。实验结果表明,与传统方法相比,该文方法有效地增强了目标对象的可区分性,能够较大地提高目标检索精度,同时,对大规模数据库有较好的适用性。展开更多
文摘提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。
文摘为提高遥感影像检索的精度,提出一种基于快速查找密度峰值聚类(Fast Search and Find of Density Peaks,FSFDP)的改进视觉词袋(Bag of Visual word,BoV)模型,该方法充分利用FSFDP聚类算法分类精度高和聚类参数易于选择等优点,增强BoV模型特征量化的稳定性和可靠性。实验表明,与经典BoV模型相比,FSFDP-BoV模型能够得到更高的检索精度。