A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency o...A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.展开更多
We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To su...We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To suppress the intensity noise of the high power 532 nm laser, a laser frequency locking system and a feedback loop based on a Mach-Zehnder interferometer were designed and used.The influences of the frequency stabilization and the crucial parameters of the MZI, such as the power splitting ratio of the beam splitters and the locking state of the MZI, on the intensity noise of the 532 nm laser were investigated in detail.After the experimental optimizations, the laser intensity noise in the frequency region from 0.4 kHz to 10 kHz was significantly suppressed.展开更多
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in ...We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.展开更多
In this paper, the problems of the stability analysis and BIBO stabilization for the switched systems are considered. Applying a stabilizing local state feedback to each subsystem, the sufficient conditions of the asy...In this paper, the problems of the stability analysis and BIBO stabilization for the switched systems are considered. Applying a stabilizing local state feedback to each subsystem, the sufficient conditions of the asymptotically stable and BIBO stabilization for the switched systems are obtained by means of the method of Lyapunov function and the method of inequality analysis.展开更多
We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. ...We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. We generate 50roW of 458nm blue laser employing a type-Ⅰ critical phase-matched LBO crystal.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61675196the National Basic Research Program of China under Grant No 2014CB340102+1 种基金the National High-Tech Research and Development Program of China under Grant No 2015AA016903the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002
文摘A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301401)
文摘We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To suppress the intensity noise of the high power 532 nm laser, a laser frequency locking system and a feedback loop based on a Mach-Zehnder interferometer were designed and used.The influences of the frequency stabilization and the crucial parameters of the MZI, such as the power splitting ratio of the beam splitters and the locking state of the MZI, on the intensity noise of the 532 nm laser were investigated in detail.After the experimental optimizations, the laser intensity noise in the frequency region from 0.4 kHz to 10 kHz was significantly suppressed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874237 and 61205130)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-N36)
文摘We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.
文摘In this paper, the problems of the stability analysis and BIBO stabilization for the switched systems are considered. Applying a stabilizing local state feedback to each subsystem, the sufficient conditions of the asymptotically stable and BIBO stabilization for the switched systems are obtained by means of the method of Lyapunov function and the method of inequality analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60308001 and 60490280-1, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJXC-SW-W14, the National Natural Science Foundation of China under Grant Nos 50572054 and 50590401, the Natural Science Foundation of Shandong Province under Grant No Y2004F01, and the National Basic Research Program of China under Grant No 2004CB619002.
文摘We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. We generate 50roW of 458nm blue laser employing a type-Ⅰ critical phase-matched LBO crystal.