The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonse...The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
In this paper, we apply function parameters to real interpolation of Lorentz- Orlicz martingale spaces. Some new interpolation theorems are formulated which generalize some known results in Lorentz spaces An introduce...In this paper, we apply function parameters to real interpolation of Lorentz- Orlicz martingale spaces. Some new interpolation theorems are formulated which generalize some known results in Lorentz spaces An introduced by Sharpley.展开更多
This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of ...This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.展开更多
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the ...The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.展开更多
Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpol...Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.展开更多
Weighted Lp mean convergence of Extended Hermite-Fejer operators based on the zeros of orthogonal polynomials with respct to the general weight and Jacobi weight is investigated. Suf ficient conditions for such conve...Weighted Lp mean convergence of Extended Hermite-Fejer operators based on the zeros of orthogonal polynomials with respct to the general weight and Jacobi weight is investigated. Suf ficient conditions for such convergence for all continuous functions are given.展开更多
The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle ...The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).展开更多
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ...A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain anal...Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain analytic solutions. So it is necessary to give numerical solutions. The reproducing kernel particle (RKP) method is based on the Carlerkin Meshless method. According to the Sobolev space and Fourier transform, the RKP shape function is mathematically proved in this paper.展开更多
In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obta...In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.展开更多
Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation o...Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.展开更多
文摘The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金supported by National Natural Science Foundation of China(Grant No.11201354)Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Wuhan University of Science and Technology)(Y201321)National Natural Science Foundation of Pre-Research Item(2011XG005)
文摘In this paper, we apply function parameters to real interpolation of Lorentz- Orlicz martingale spaces. Some new interpolation theorems are formulated which generalize some known results in Lorentz spaces An introduced by Sharpley.
文摘This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.
基金supported by the Key Program of the National Natural Science Foundation of China (Grand No. 51138001)the China-German Cooperation Project (Grand No. GZ566)+1 种基金the Innovative Research Groups Funded by the National Natural Science Foundation of China (Grand No. 51121005)the Special Funds for the Basic Scientific Research Expenses for the Central University (Grant No. DUT13LK16)
文摘The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
文摘Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.
文摘Weighted Lp mean convergence of Extended Hermite-Fejer operators based on the zeros of orthogonal polynomials with respct to the general weight and Jacobi weight is investigated. Suf ficient conditions for such convergence for all continuous functions are given.
基金supported by the Innovation Research for the Postgrad-uates of Guangzhou University(2020GDJC-D06)supported by the National Natural Science Foundation of China(12071229)。
文摘The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).
基金Project supported by the National Natural Science Foundation of China(Grant No.11002054)the Foundation of Hunan Educational Committee(Grant No.12C0059).
文摘A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
文摘Many mechanical problems can be induced from differential equations with boundary conditions; there exist analytic and numerical methods for solving the differential equations. Usually it is not so easy to obtain analytic solutions. So it is necessary to give numerical solutions. The reproducing kernel particle (RKP) method is based on the Carlerkin Meshless method. According to the Sobolev space and Fourier transform, the RKP shape function is mathematically proved in this paper.
文摘In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.
文摘Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.