期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
JR East aims for driverless Shinkansen operation
1
作者 Yasuaki Suzuki 《High-Speed Railway》 2024年第3期197-201,共5页
East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment... East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems. 展开更多
关键词 High-speed railway SHINKANSEN ATO automatic train operation GOA3 Driverless operation
在线阅读 下载PDF
Braking distance prediction for vehicle consist in low-speed on-sight operation:a Monte Carlo approach
2
作者 Raphael Pfaff 《Railway Engineering Science》 2023年第2期135-144,共10页
The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in indust... The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for lowspeed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes. 展开更多
关键词 Freight rail SHUNTING Braking curves Brake set-up Driver assistance system automatic train operation
在线阅读 下载PDF
Energy Saving for Automatic Train Control in Moving Block Signaling System
3
作者 GU Qing MENG Yu MA Fei 《China Communications》 SCIE CSCD 2014年第A02期12-22,共11页
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ... With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present. 展开更多
关键词 moving block signaling (MBS) energy saving automatic train protection (ATP) automatic train operation (ATO) TRACKING train speed trajectory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部